Flexible Graphene-Based Composite Films for Supercapacitors with Tunable Areal Capacitance

被引:18
|
作者
Song, Kuo [1 ]
Ni, Haifang [1 ]
Fan, Li-Zhen [1 ]
机构
[1] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Key Lab New Energy Mat & Technol, Beijing 100083, Peoples R China
关键词
Supercapacitors; graphene; activated carbon fiber; areal capacitance; composite films; POROUS CARBON; OXIDE/CARBON NANOTUBE; MICRO-SUPERCAPACITORS; PEN INK; PERFORMANCE; FABRICATION; AEROGELS; ELECTRODES; DEVICES; STORAGE;
D O I
10.1016/j.electacta.2017.03.065
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Flexible supercapacitors based on paper-like electrodes have attracted significant interest because of the increasing demands in the energy storage, and they are recently claimed to be minimized and portable for meeting practical applications. As promising binder-free electrode materials in the supercapacitors, graphene-based films have been developed for enhancing their performance in energy storage by insetting "spacers" in-between nanosheets to prevent inevitable aggregations. In this study, a facile and versatile strategy is presented for fabricating graphene-based composite films by introducing activated carbonized cotton fibers to regulate the chemical composition, surface area and pore size distribution. The obtained composite films permit to present substantially increased energy storage capability (capacitance of 310 F g (1) and 150 F g 1 at 0.1 A g(1) and 10 A g (1) in 6 mol L-1 KOH electrolyte, respectively). Furthermore, tunable areal capacitance is realized by altering the stacked film layers without loss of mass specific capacitance. The devices based on composite films with excellent power density (up to 156.5 mW cm (2)) and energy density (240 mWh cm (2)) highlight a controllable, mini-sized and highefficiency stage for energy storage. Such unique strategy suggests great potential in the commercialization of portable electronic devices, which require greater capacitance in a limited area. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:233 / 241
页数:9
相关论文
共 50 条
  • [1] Flexible supercapacitors with tunable capacitance based on reduced graphene oxide/tannin composite for wearable electronics
    Yang, Chao
    Yang, Jun
    Liang, Chunliu
    Zang, Limin
    Zhao, Zijie
    Li, Hongjie
    Bai, Lijie
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 894
  • [2] Flexible supercapacitors with tunable capacitance based on reduced graphene oxide/tannin composite for wearable electronics
    Yang, Chao
    Yang, Jun
    Liang, Chunliu
    Zang, Limin
    Zhao, Zijie
    Li, Hongjie
    Bai, Lijie
    Journal of Electroanalytical Chemistry, 2021, 894
  • [3] Flexible Graphene-Based Supercapacitors: A Review
    Chee, W. K.
    Lim, H. N.
    Zainal, Z.
    Huang, N. M.
    Harrison, I.
    Andou, Y.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (08): : 4153 - 4172
  • [4] Graphene-based materials for flexible supercapacitors
    Shao, Yuanlong
    El-Kady, Maher F.
    Wang, Lisa J.
    Zhang, Qinghong
    Li, Yaogang
    Wang, Hongzhi
    Mousavi, Mir F.
    Kaner, Richard B.
    CHEMICAL SOCIETY REVIEWS, 2015, 44 (11) : 3639 - 3665
  • [5] Recent Progress in Flexible Graphene-Based Composite Fiber Electrodes for Supercapacitors
    Wu, Songmei
    CRYSTALS, 2021, 11 (12)
  • [6] Molecular-level uniform graphene/polyaniline composite film for flexible supercapacitors with high-areal capacitance
    Wang, Peiyao
    Shao, Feng
    Li, Bin
    Su, Yanjie
    Yang, Zhi
    Hu, Nantao
    Zhang, Yafei
    NANOTECHNOLOGY, 2023, 34 (17)
  • [7] Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films
    Wu, Qiong
    Xu, Yuxi
    Yao, Zhiyi
    Liu, Anran
    Shi, Gaoquan
    ACS NANO, 2010, 4 (04) : 1963 - 1970
  • [8] Graphene-Based Nanomaterials for Flexible and Wearable Supercapacitors
    Huang, Liang
    Santiago, Diana
    Loyselle, Patricia
    Dai, Liming
    SMALL, 2018, 14 (43)
  • [9] Facile Fabrication of Flexible Graphene-Based Micro-Supercapacitors with Ultra-High Areal Performance
    Zhao, Yirong
    Du, Jingwei
    Li, Yunxia
    Li, Xiaopeng
    Zhang, Chaoyue
    Zhang, Xudong
    Zhang, Zhenxing
    Zhou, Jinyuan
    Pan, Xiaojun
    Xie, Erqing
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (09): : 8415 - 8422
  • [10] Graphene-Based Flexible and Transparent Tunable Capacitors
    Man, Baoyuan
    Xu, Shicai
    Jiang, Shouzheng
    Liu, Aihua
    Gao, Shoubao
    Zhang, Chao
    Qiu, Hengwei
    Li, Zhen
    NANOSCALE RESEARCH LETTERS, 2015, 10 : 1 - 12