Fusion Radiomics Features from Conventional MRI Predict MGMT Promoter Methylation Status in Lower Grade Gliomas

被引:45
作者
Jiang, Chendan [1 ]
Kong, Ziren [1 ]
Liu, Sirui [2 ]
Feng, Shi [1 ]
Zhang, Yiwei [2 ]
Zhu, Ruizhe [1 ]
Chen, Wenlin [1 ]
Wang, Yuekun [1 ]
Lyu, Yuelei [2 ,3 ]
You, Hui [2 ]
Zhao, Dachun [4 ]
Wang, Renzhi [1 ]
Wang, Yu [1 ]
Ma, Wenbin [1 ]
Feng, Feng [2 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Neurosurg, Beijing, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Radiol, Beijing, Peoples R China
[3] Capital Med Univ, Beijing Chao Yang Hosp, Dept Radiol, Beijing, Peoples R China
[4] Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Pathol, Beijing, Peoples R China
关键词
Radiomics; MRI; MGMT promoter methylation; Lower grade glioma; Fusion; GLIOBLASTOMA; SURVIVAL;
D O I
10.1016/j.ejrad.2019.108714
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter has been proven to be a prognostic and predictive biomarker for lower grade glioma (LGG). This study aims to build a radiomics model to preoperatively predict the MGMT promoter methylation status in LGG. Method: 122 pathology-confirmed LGG patients were retrospectively reviewed, with 87 local patients as the training dataset, and 35 from The Cancer Imaging Archive as independent validation. A total of 1702 radiomics features were extracted from three-dimensional contrast-enhanced T1 (3D-CE-T1)-weighted and T2-weighted MRI images, including 14 shape, 18 first order, 75 texture, and 744 wavelet features respectively. The radiomics features were selected with the least absolute shrinkage and selection operator algorithm, and prediction models were constructed with multiple classifiers. Models were evaluated using receiver operating characteristic (ROC). Results: Five radiomics prediction models, namely, 3D-CE-T1-weighted single radiomics model, T2-weighted single radiomics model, fusion radiomics model, linear combination radiomics model, and clinical integrated model, were built. The fusion radiomics model, which constructed from the concatenation of both series, displayed the best performance, with an accuracy of 0.849 and an area under the curve (AUC) of 0.970 (0.9391.000) in the training dataset, and an accuracy of 0.886 and an AUC of 0.898 (0.786-1.000) in the validation dataset. Linear combination of single radiomics models and integration of clinical factors did not improve. Conclusions: Conventional MRI radiomics models are reliable for predicting the MGMT promoter methylation status in LGG patients. The fusion of radiomics features from different series may increase the prediction performance.
引用
收藏
页数:8
相关论文
共 39 条
[1]   Lesion location implemented magnetic resonance imaging radiomics for predicting IDH and TERT promoter mutations in grade II/III gliomas [J].
Arita, Hideyuki ;
Kinoshita, Manabu ;
Kawaguchi, Atsushi ;
Takahashi, Masamichi ;
Narita, Yoshitaka ;
Terakawa, Yuzo ;
Tsuyuguchi, Naohiro ;
Okita, Yoshiko ;
Nonaka, Masahiro ;
Moriuchi, Shusuke ;
Takagaki, Masatoshi ;
Fujimoto, Yasunori ;
Fukai, Junya ;
Izumoto, Shuichi ;
Ishibashi, Kenichi ;
Nakajima, Yoshikazu ;
Shofuda, Tomoko ;
Kanematsu, Daisuke ;
Yoshioka, Ema ;
Kodama, Yoshinori ;
Mano, Masayuki ;
Mori, Kanji ;
Ichimura, Koichi ;
Kanemura, Yonehiro .
SCIENTIFIC REPORTS, 2018, 8
[2]   MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status [J].
Bady, Pierre ;
Sciuscio, Davide ;
Diserens, Annie-Claire ;
Bloch, Jocelyne ;
van den Bent, Martin J. ;
Marosi, Christine ;
Dietrich, Pierre-Yves ;
Weller, Michael ;
Mariani, Luigi ;
Heppner, Frank L. ;
Mcdonald, David R. ;
Lacombe, Denis ;
Stupp, Roger ;
Delorenzi, Mauro ;
Hegi, Monika E. .
ACTA NEUROPATHOLOGICA, 2012, 124 (04) :547-560
[3]  
Bell E.H., 2018, JAMA ONCOLOGY
[4]   Spatial frequency processing in the central and peripheral visual field during scene viewing [J].
Cajar, Anke ;
Engbert, Ralf ;
Laubrock, Jochen .
VISION RESEARCH, 2016, 127 :186-197
[5]   Relationship between Tumor Enhancement, Edema, IDH1 Mutational Status, MGMT Promoter Methylation, and Survival in Glioblastoma [J].
Carrillo, J. A. ;
Lai, A. ;
Nghiemphu, P. L. ;
Kim, H. J. ;
Phillips, H. S. ;
Kharbanda, S. ;
Moftakhar, P. ;
Lalaezari, S. ;
Yong, W. ;
Ellingson, B. M. ;
Cloughesy, T. F. ;
Pope, W. B. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2012, 33 (07) :1349-1355
[6]  
Cho HH, 2017, IEEE ENG MED BIO, P3081, DOI 10.1109/EMBC.2017.8037508
[7]   Machine learning: a useful radiological adjunct in determination of a newly diagnosed glioma's grade and IDH status [J].
De Looze, Celine ;
Beausang, Alan ;
Cryan, Jane ;
Loftus, Teresa ;
Buckley, Patrick G. ;
Farrell, Michael ;
Looby, Seamus ;
Reilly, Richard ;
Brett, Francesca ;
Kearney, Hugh .
JOURNAL OF NEURO-ONCOLOGY, 2018, 139 (02) :491-499
[8]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[9]   An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging [J].
Drabycz, Sylvia ;
Roldan, Gloria ;
de Robles, Paula ;
Adler, Daniel ;
McIntyre, John B. ;
Magliocco, Anthony M. ;
Cairncross, J. Gregory ;
Mitchell, J. Ross .
NEUROIMAGE, 2010, 49 (02) :1398-1405
[10]   Regularization Paths for Generalized Linear Models via Coordinate Descent [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Rob .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01) :1-22