DATA APPROXIMATION USING POLYHARMONIC RADIAL BASIS FUNCTIONS

被引:0
作者
Segeth, Karel [1 ]
机构
[1] Tech Univ Liberec, Fac Mechatron Informat & Interdisciplinary Studie, Inst New Technol & Appl Informat, Studentska 2, Liberec 46117, Czech Republic
来源
PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 20 | 2021年
关键词
polyharmonic spline; radial basis function; approximation; data fitting; interpolation;
D O I
10.21136/panm.2020.13
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is concerned with the approximation and interpolation employing polyharmonic splines in multivariate problems. The properties of approximants and interpolants based on these radial basis functions are shown. The methods of such data fitting are applied in practice to treat the problems of, e.g., geographic information systems, signal processing, etc. A simple 1D computational example is presented.
引用
收藏
页码:129 / 138
页数:10
相关论文
共 8 条
[1]  
[Anonymous], 1984, Computer Science and Applied Mathematics
[2]  
Buhmann M. D., 2003, C MO AP C M, DOI 10.1017/CBO9780511543241
[3]  
Horowitz FG, 1996, 26TH PROCEEDINGS OF THE APPLICATIONS OF COMPUTERS AND OPERATIONS RESEARCH IN THE MINERAL INDUSTRY, P53
[4]   GENERAL VARIATIONAL APPROACH TO THE INTERPOLATION PROBLEM [J].
MITAS, L ;
MITASOVA, H .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1988, 16 (12) :983-992
[5]  
Segeth K, J COMPUT APPL MATH
[6]   Polyharmonic splines generated by multivariate smooth interpolation [J].
Segeth, Karel .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (09) :3067-3076
[7]   Some computational aspects of smooth approximation [J].
Segeth, Karel .
COMPUTING, 2013, 95 (01) :S695-S708
[8]   METHOD FOR SMOOTH APPROXIMATION OF DATA [J].
TALMI, A ;
GILAT, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (02) :93-123