ON SELF-DUAL CYCLIC CODES OF LENGTH pa OVER GR(p2, s)

被引:7
作者
Jitman, Somphong [1 ]
Ling, San [2 ]
Sangwisut, Ekkasit [3 ]
机构
[1] Silpakorn Univ, Fac Sci, Dept Math, Nakhon Pathom 73000, Thailand
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, 21 Nanyang Link, Singapore 637371, Singapore
[3] Thaksin Univ, Fac Sci, Dept Math & Stat, Phatthalung Campus, Phatthalung 93110, Thailand
基金
新加坡国家研究基金会;
关键词
Self-dual codes; cyclic codes; codes over rings; Galois rings; Hermitian inner product; Z(4); M);
D O I
10.3934/amc.2016004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, cyclic codes over the Galois ring GR(p(2), s) are studied. The main result is the characterization and enumeration of Hermitian self -dual cyclic codes of length p(a) over GR(p(2), s). Combining with some known results and the standard Discrete Fourier Transform decomposition, we arrive at the characterization and enumeration of Euclidean self -dual cyclic codes of any length over GR(p(2), s).
引用
收藏
页码:255 / 273
页数:19
相关论文
共 14 条
[1]   On the generators of Z4 cyclic codes of length 2e [J].
Abualrub, T ;
Oehmke, R .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (09) :2126-2133
[2]  
Benjamin A. T., 2003, Proofs That Really Count: The Art of Combinatorial Proof
[3]   Cyclic codes over Z4 of oddly even length [J].
Blackford, T .
DISCRETE APPLIED MATHEMATICS, 2003, 128 (01) :27-46
[4]  
Dougherty ST, 2006, DESIGN CODE CRYPTOGR, V39, P127, DOI 10.1007/s10623-005-2773-x
[5]   On modular cyclic codes [J].
Dougherty, Steven T. ;
Park, Young Ho .
FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (01) :31-57
[6]   THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES [J].
HAMMONS, AR ;
KUMAR, PV ;
CALDERBANK, AR ;
SLOANE, NJA ;
SOLE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :301-319
[7]   On Self-Dual Cyclic Codes Over Finite Fields [J].
Jia, Yan ;
Ling, San ;
Xing, Chaoping .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (04) :2243-2251
[8]   Abelian Codes in Principal Ideal Group Algebras [J].
Jitman, Somphong ;
Ling, San ;
Liu, Hongwei ;
Xie, Xiaoli .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (05) :3046-3058
[9]   Cyclic codes over GR(p2, m) of length pk [J].
Kiah, Han Mao ;
Leung, Ka Hin ;
Ling, San .
FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (03) :834-846
[10]   A note on cyclic codes over GR(p2, m) of length pk [J].
Kiah, Han Mao ;
Leung, Ka Hin ;
Ling, San .
DESIGNS CODES AND CRYPTOGRAPHY, 2012, 63 (01) :105-112