Mechanism of skyrmion condensation and pairing for twisted bilayer graphene

被引:2
作者
Jing, Dian [1 ,2 ,3 ]
Tyner, Alexander Conkey [4 ]
Goswami, Pallab [1 ,4 ]
机构
[1] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
[3] Northwestern Univ, Integrated Sci Program, Evanston, IL 60208 USA
[4] Northwestern Univ, Grad Program Appl Phys, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
MAGIC-ANGLE; SIGMA-MODEL; SUPERCONDUCTIVITY; INSTANTONS; STATES; TERMS; SPIN; TRANSITIONS; CASCADE; PHASE;
D O I
10.1103/PhysRevB.105.184505
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
When quantum flavor Hall insulator phases of itinerant fermions are disordered by strong quantum fluctuations, the condensation of skyrmion textures of order parameter fields can lead to superconductivity. In this work, we address the mechanism of skyrmion condensation by considering the scattering between (2+1)dimensional Weyl fermions and hedgehog-type tunneling configurations of order parameters that violate the skyrmion-number conservation law. We show the quantized, flavor Hall conductivity (o-xfy) controls the degeneracy of topologically protected, fermion zero-modes, localized on hedgehogs. The overlap between zero-mode eigenfunctions or ???t Hooft vertex is shown to control the nature of the paired states. Employing this formalism for the N = 2 model of twisted bilayer graphene, we describe the competition among flavor Hall orders, charge 4e??? superconductivity, and various charge 2e??? paired states in BCS and paired-density-wave channels. At charge neutrality, we show that the competition between flavor Hall insulators and charge 2e??? states can be captured by SO(9) nonlinear sigma models. If the topological pairing mechanism can dominate over the conventional pairing mechanism, our work predicts the flavor-symmetry-preserving charge 4e??? superconductivity as a natural candidate for the paired state in the vicinity of the charge neutral point.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Fermionic Monte Carlo Study of a Realistic Model of Twisted Bilayer Graphene
    Hofmann, Johannes S.
    Khalaf, Eslam
    Vishwanath, Ashvin
    Berg, Erez
    Lee, Jong Yeon
    PHYSICAL REVIEW X, 2022, 12 (01)
  • [32] Particle-hole asymmetric phases in doped twisted bilayer graphene
    Hou, Run
    Sur, Shouvik
    Wagner, Lucas K.
    Nevidomskyy, Andriy H.
    PHYSICAL REVIEW B, 2025, 111 (12)
  • [33] Mechanism for Anomalous Hall Ferromagnetism in Twisted Bilayer Graphene
    Bultinck, Nick
    Chatterjee, Shubhayu
    Zaletel, Michael P.
    PHYSICAL REVIEW LETTERS, 2020, 124 (16)
  • [34] Filling- and interaction-modulated pairing symmetry in twisted bilayer graphene
    Cao, Jie
    Qi, Fenghua
    Xiang, Yuanyuan
    Jin, Guojun
    PHYSICAL REVIEW B, 2022, 106 (11)
  • [35] Symmetry breaking and skyrmionic transport in twisted bilayer graphene
    Chatterjee, Shubhayu
    Bultinck, Nick
    Zaletel, Michael P.
    PHYSICAL REVIEW B, 2020, 101 (16)
  • [36] Theory of Correlated Insulators and Superconductivity in Twisted Bilayer Graphene
    Shavit, Gal
    Berg, Erez
    Stern, Ady
    Oreg, Yuval
    PHYSICAL REVIEW LETTERS, 2021, 127 (24)
  • [37] Moiré-enabled topological superconductivity in twisted bilayer graphene
    Khosravian, Maryam
    Bascones, Elena
    Lado, Jose L.
    2D MATERIALS, 2024, 11 (03)
  • [38] Electrically tunable correlated and topological states in twisted monolayer-bilayer graphene
    Chen, Shaowen
    He, Minhao
    Zhang, Ya-Hui
    Hsieh, Valerie
    Fei, Zaiyao
    Watanabe, K.
    Taniguchi, T.
    Cobden, David H.
    Xu, Xiaodong
    Dean, Cory R.
    Yankowitz, Matthew
    NATURE PHYSICS, 2021, 17 (03) : 374 - +
  • [39] Kondo effect in twisted bilayer graphene
    Shankar, A. S.
    Oriekhov, D. O.
    Mitchell, Andrew K.
    Fritz, L.
    PHYSICAL REVIEW B, 2023, 107 (24)
  • [40] Band gap formation in commensurate twisted bilayer graphene / hBN moiré lattices
    Rothstein, A.
    Schattauer, C.
    Dolleman, R. J.
    Trellenkamp, S.
    Lentz, F.
    Watanabe, K.
    Taniguchi, T.
    Kennes, D. M.
    Beschoten, B.
    Stampfer, C.
    Libisch, F.
    PHYSICAL REVIEW B, 2024, 109 (15)