GLOBAL REGULARITY FOR THE 3D MHD SYSTEM WITH DAMPING

被引:10
作者
Zhang, Zujin [1 ]
Yang, Xian [2 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R China
[2] Ganzhou Teachers Coll, Foreign Languages Dept, Ganzhou 341000, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
MHD equations; damping; strong solutions; NAVIER-STOKES EQUATIONS; UNIQUENESS;
D O I
10.4064/cm6654-9-2015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Cauchy problem for the 3D MHD system with damping terms epsilon vertical bar u vertical bar(alpha-1)u and delta vertical bar b vertical bar(beta-1)b (epsilon, delta > 0 and alpha, beta >= 1), and show that the strong solution exists globally for any alpha, beta > 3. This improves the previous results significantly.
引用
收藏
页码:107 / 110
页数:4
相关论文
共 4 条
[1]   Weak and strong solutions for the incompressible Navier-Stokes equations with damping [J].
Cai, Xiaojing ;
Jiu, Quansen .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (02) :799-809
[2]   REGULARITY AND DECAY OF 3D INCOMPRESSIBLE MHD EQUATIONS WITH NONLINEAR DAMPING TERMS [J].
Ye, Zhuan .
COLLOQUIUM MATHEMATICUM, 2015, 139 (02) :185-203
[3]   On the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping [J].
Zhang, Zujin ;
Wu, Xinglong ;
Lu, Ming .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (01) :414-419
[4]   Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping [J].
Zhou, Yong .
APPLIED MATHEMATICS LETTERS, 2012, 25 (11) :1822-1825