Quality control stress test for deep learning-based diagnostic model in digital pathology

被引:89
作者
Schoemig-Markiefka, Birgid [1 ]
Pryalukhin, Alexey
Hulla, Wolfgang [2 ]
Bychkov, Andrey [3 ,4 ]
Fukuoka, Junya [3 ,4 ]
Madabhushi, Anant [5 ,6 ]
Achter, Viktor [7 ]
Nieroda, Lech [7 ]
Buettner, Reinhard [1 ]
Quaas, Alexander [1 ]
Tolkach, Yuri [1 ]
机构
[1] Univ Hosp Cologne, Inst Pathol, Cologne, Germany
[2] Landesklinikum Wiener Neustadt, Inst Pathol, Wiener Neustadt, Austria
[3] Nagasaki Univ, Grad Sch Biomed Sci, Dept Pathol, Nagasaki, Japan
[4] Kameda Med Ctr, Dept Pathol, Kamogawa, Japan
[5] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
[6] Louis Stokes Cleveland Vet Adm Med Ctr, Cleveland, OH USA
[7] Univ Cologne, Reg Comp Ctr RRZK, Cologne, Germany
基金
美国国家卫生研究院;
关键词
PROSTATE-CANCER; SHARPNESS ASSESSMENT; QUANTIFICATION; NORMALIZATION; BIOPSIES;
D O I
10.1038/s41379-021-00859-x
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Digital pathology provides a possibility for computational analysis of histological slides and automatization of routine pathological tasks. Histological slides are very heterogeneous concerning staining, sections' thickness, and artifacts arising during tissue processing, cutting, staining, and digitization. In this study, we digitally reproduce major types of artifacts. Using six datasets from four different institutions digitized by different scanner systems, we systematically explore artifacts' influence on the accuracy of the pre-trained, validated, deep learning-based model for prostate cancer detection in histological slides. We provide evidence that any histological artifact dependent on severity can lead to a substantial loss in model performance. Strategies for the prevention of diagnostic model accuracy losses in the context of artifacts are warranted. Stress-testing of diagnostic models using synthetically generated artifacts might be an essential step during clinical validation of deep learning-based algorithms.
引用
收藏
页码:2098 / 2108
页数:11
相关论文
共 48 条
[31]   Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer [J].
Nagpal, Kunal ;
Foote, Davis ;
Liu, Yun ;
Chen, Po-Hsuan Cameron ;
Wulczyn, Ellery ;
Tan, Fraser ;
Olson, Niels ;
Smith, Jenny L. ;
Mohtashamian, Arash ;
Wren, James H. ;
Corrado, Greg S. ;
MacDonald, Robert ;
Peng, Lily H. ;
Amin, Mahul B. ;
Evans, Andrew J. ;
Sangoi, Ankur R. ;
Mermel, Craig H. ;
Hipp, Jason D. ;
Stumpe, Martin C. .
NPJ DIGITAL MEDICINE, 2019, 2 (1)
[32]   Digital pathology and artificial intelligence [J].
Niazi, Muhammad Khalid Khan ;
Parwani, Anil V. ;
Gurcan, Metin N. .
LANCET ONCOLOGY, 2019, 20 (05) :E253-E261
[33]   Staining Invariant Features for Improving Generalization of Deep Convolutional Neural Networks in Computational Pathology [J].
Otalora, Sebastian ;
Atzori, Manfredo ;
Andrearczyk, Vincent ;
Khan, Amjad ;
Mueller, Henning .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7 (AUG)
[34]   Validating Whole Slide Imaging for Diagnostic Purposes in Pathology Guideline from the College of American Pathologists Pathology and Laboratory Quality Center [J].
Pantanowitz, Liron ;
Sinard, John H. ;
Henricks, Walter H. ;
Fatheree, Lisa A. ;
Carter, Alexis B. ;
Contis, Lydia ;
Beckwith, Bruce A. ;
Evans, Andrew J. ;
Otis, Christopher N. ;
Lal, Avtar ;
Parwani, Anil V. .
ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2013, 137 (12) :1710-1722
[35]   Adversarial Domain Adaptation for Classification of Prostate Histopathology Whole-Slide Images [J].
Ren, Jian ;
Hacihaliloglu, Ilker ;
Singer, Eric A. ;
Foran, David J. ;
Qi, Xin .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 :201-209
[36]   Hidden Variables in Deep Learning Digital Pathology and Their Potential to Cause Batch Effects: Prediction Model Study [J].
Schmitt, Max ;
Maron, Roman Christoph ;
Hekler, Achim ;
Stenzinger, Albrecht ;
Hauschild, Axel ;
Weichenthal, Michael ;
Tiemann, Markus ;
Krahl, Dieter ;
Kutzner, Heinz ;
Utikal, Jochen Sven ;
Haferkamp, Sebastian ;
Kather, Jakob Nikolas ;
Klauschen, Frederick ;
Krieghoff-Henning, Eva ;
Froehling, Stefan ;
von Kalle, Christof ;
Brinker, Titus Josef .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (02)
[37]  
Selvaraju RR, 2020, INT J COMPUT VISION, V128, P336, DOI [10.1007/s11263-019-01228-7, 10.1109/ICCV.2017.74]
[38]   Deep Focus: Detection of out-of-focus regions in whole slide digital images using deep learning [J].
Senaras, Cagier ;
Niazi, M. Khalid Khan ;
Lozanski, Gerard ;
Gurcan, Metin N. .
PLOS ONE, 2018, 13 (10)
[39]  
Shaban MT, 2019, I S BIOMED IMAGING, P953, DOI [10.1109/ISBI.2019.8759152, 10.1109/isbi.2019.8759152]
[40]   Identifying in vivo DCE MRI markers associated with microvessel architecture and gleason grades of prostate cancer [J].
Singanamalli, Asha ;
Rusu, Mirabela ;
Sparks, Rachel E. ;
Shih, Natalie N. C. ;
Ziober, Amy ;
Wang, Li-Ping ;
Tomaszewski, John ;
Rosen, Mark ;
Feldman, Michael ;
Madabhushi, Anant .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2016, 43 (01) :149-158