Quality control stress test for deep learning-based diagnostic model in digital pathology

被引:77
作者
Schoemig-Markiefka, Birgid [1 ]
Pryalukhin, Alexey
Hulla, Wolfgang [2 ]
Bychkov, Andrey [3 ,4 ]
Fukuoka, Junya [3 ,4 ]
Madabhushi, Anant [5 ,6 ]
Achter, Viktor [7 ]
Nieroda, Lech [7 ]
Buettner, Reinhard [1 ]
Quaas, Alexander [1 ]
Tolkach, Yuri [1 ]
机构
[1] Univ Hosp Cologne, Inst Pathol, Cologne, Germany
[2] Landesklinikum Wiener Neustadt, Inst Pathol, Wiener Neustadt, Austria
[3] Nagasaki Univ, Grad Sch Biomed Sci, Dept Pathol, Nagasaki, Japan
[4] Kameda Med Ctr, Dept Pathol, Kamogawa, Japan
[5] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
[6] Louis Stokes Cleveland Vet Adm Med Ctr, Cleveland, OH USA
[7] Univ Cologne, Reg Comp Ctr RRZK, Cologne, Germany
基金
美国国家卫生研究院;
关键词
PROSTATE-CANCER; SHARPNESS ASSESSMENT; QUANTIFICATION; NORMALIZATION; BIOPSIES;
D O I
10.1038/s41379-021-00859-x
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Digital pathology provides a possibility for computational analysis of histological slides and automatization of routine pathological tasks. Histological slides are very heterogeneous concerning staining, sections' thickness, and artifacts arising during tissue processing, cutting, staining, and digitization. In this study, we digitally reproduce major types of artifacts. Using six datasets from four different institutions digitized by different scanner systems, we systematically explore artifacts' influence on the accuracy of the pre-trained, validated, deep learning-based model for prostate cancer detection in histological slides. We provide evidence that any histological artifact dependent on severity can lead to a substantial loss in model performance. Strategies for the prevention of diagnostic model accuracy losses in the context of artifacts are warranted. Stress-testing of diagnostic models using synthetically generated artifacts might be an essential step during clinical validation of deep learning-based algorithms.
引用
收藏
页码:2098 / 2108
页数:11
相关论文
共 48 条
  • [31] Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer
    Nagpal, Kunal
    Foote, Davis
    Liu, Yun
    Chen, Po-Hsuan Cameron
    Wulczyn, Ellery
    Tan, Fraser
    Olson, Niels
    Smith, Jenny L.
    Mohtashamian, Arash
    Wren, James H.
    Corrado, Greg S.
    MacDonald, Robert
    Peng, Lily H.
    Amin, Mahul B.
    Evans, Andrew J.
    Sangoi, Ankur R.
    Mermel, Craig H.
    Hipp, Jason D.
    Stumpe, Martin C.
    [J]. NPJ DIGITAL MEDICINE, 2019, 2 (1)
  • [32] Digital pathology and artificial intelligence
    Niazi, Muhammad Khalid Khan
    Parwani, Anil V.
    Gurcan, Metin N.
    [J]. LANCET ONCOLOGY, 2019, 20 (05) : E253 - E261
  • [33] Staining Invariant Features for Improving Generalization of Deep Convolutional Neural Networks in Computational Pathology
    Otalora, Sebastian
    Atzori, Manfredo
    Andrearczyk, Vincent
    Khan, Amjad
    Mueller, Henning
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7 (AUG):
  • [34] Validating Whole Slide Imaging for Diagnostic Purposes in Pathology Guideline from the College of American Pathologists Pathology and Laboratory Quality Center
    Pantanowitz, Liron
    Sinard, John H.
    Henricks, Walter H.
    Fatheree, Lisa A.
    Carter, Alexis B.
    Contis, Lydia
    Beckwith, Bruce A.
    Evans, Andrew J.
    Otis, Christopher N.
    Lal, Avtar
    Parwani, Anil V.
    [J]. ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2013, 137 (12) : 1710 - 1722
  • [35] Adversarial Domain Adaptation for Classification of Prostate Histopathology Whole-Slide Images
    Ren, Jian
    Hacihaliloglu, Ilker
    Singer, Eric A.
    Foran, David J.
    Qi, Xin
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 : 201 - 209
  • [36] Hidden Variables in Deep Learning Digital Pathology and Their Potential to Cause Batch Effects: Prediction Model Study
    Schmitt, Max
    Maron, Roman Christoph
    Hekler, Achim
    Stenzinger, Albrecht
    Hauschild, Axel
    Weichenthal, Michael
    Tiemann, Markus
    Krahl, Dieter
    Kutzner, Heinz
    Utikal, Jochen Sven
    Haferkamp, Sebastian
    Kather, Jakob Nikolas
    Klauschen, Frederick
    Krieghoff-Henning, Eva
    Froehling, Stefan
    von Kalle, Christof
    Brinker, Titus Josef
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (02)
  • [37] Selvaraju RR, 2020, INT J COMPUT VISION, V128, P336, DOI [10.1007/s11263-019-01228-7, 10.1109/ICCV.2017.74]
  • [38] Deep Focus: Detection of out-of-focus regions in whole slide digital images using deep learning
    Senaras, Cagier
    Niazi, M. Khalid Khan
    Lozanski, Gerard
    Gurcan, Metin N.
    [J]. PLOS ONE, 2018, 13 (10):
  • [39] Shaban MT, 2019, I S BIOMED IMAGING, P953, DOI [10.1109/ISBI.2019.8759152, 10.1109/isbi.2019.8759152]
  • [40] Identifying in vivo DCE MRI markers associated with microvessel architecture and gleason grades of prostate cancer
    Singanamalli, Asha
    Rusu, Mirabela
    Sparks, Rachel E.
    Shih, Natalie N. C.
    Ziober, Amy
    Wang, Li-Ping
    Tomaszewski, John
    Rosen, Mark
    Feldman, Michael
    Madabhushi, Anant
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2016, 43 (01) : 149 - 158