Quality control stress test for deep learning-based diagnostic model in digital pathology

被引:87
作者
Schoemig-Markiefka, Birgid [1 ]
Pryalukhin, Alexey
Hulla, Wolfgang [2 ]
Bychkov, Andrey [3 ,4 ]
Fukuoka, Junya [3 ,4 ]
Madabhushi, Anant [5 ,6 ]
Achter, Viktor [7 ]
Nieroda, Lech [7 ]
Buettner, Reinhard [1 ]
Quaas, Alexander [1 ]
Tolkach, Yuri [1 ]
机构
[1] Univ Hosp Cologne, Inst Pathol, Cologne, Germany
[2] Landesklinikum Wiener Neustadt, Inst Pathol, Wiener Neustadt, Austria
[3] Nagasaki Univ, Grad Sch Biomed Sci, Dept Pathol, Nagasaki, Japan
[4] Kameda Med Ctr, Dept Pathol, Kamogawa, Japan
[5] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
[6] Louis Stokes Cleveland Vet Adm Med Ctr, Cleveland, OH USA
[7] Univ Cologne, Reg Comp Ctr RRZK, Cologne, Germany
基金
美国国家卫生研究院;
关键词
PROSTATE-CANCER; SHARPNESS ASSESSMENT; QUANTIFICATION; NORMALIZATION; BIOPSIES;
D O I
10.1038/s41379-021-00859-x
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Digital pathology provides a possibility for computational analysis of histological slides and automatization of routine pathological tasks. Histological slides are very heterogeneous concerning staining, sections' thickness, and artifacts arising during tissue processing, cutting, staining, and digitization. In this study, we digitally reproduce major types of artifacts. Using six datasets from four different institutions digitized by different scanner systems, we systematically explore artifacts' influence on the accuracy of the pre-trained, validated, deep learning-based model for prostate cancer detection in histological slides. We provide evidence that any histological artifact dependent on severity can lead to a substantial loss in model performance. Strategies for the prevention of diagnostic model accuracy losses in the context of artifacts are warranted. Stress-testing of diagnostic models using synthetically generated artifacts might be an essential step during clinical validation of deep learning-based algorithms.
引用
收藏
页码:2098 / 2108
页数:11
相关论文
共 48 条
[1]   Towards better digital pathology workflows: programming libraries for high-speed sharpness assessment of Whole Slide Images [J].
Ameisen, David ;
Deroulers, Christophe ;
Perrier, Valerie ;
Bouhidel, Fatiha ;
Battistella, Maxime ;
Legres, Luc ;
Janin, Anne ;
Bertheau, Philippe ;
Yunes, Jean-Baptiste .
DIAGNOSTIC PATHOLOGY, 2014, 9
[2]   From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge [J].
Bandi, Peter ;
Geessink, Oscar ;
Manson, Quirine ;
van Dijk, Marcory ;
Balkenhol, Maschenka ;
Hermsen, Meyke ;
Bejnordi, Babak Ehteshami ;
Lee, Byungjae ;
Paeng, Kyunghyun ;
Zhong, Aoxiao ;
Li, Quanzheng ;
Zanjani, Farhad Ghazvinian ;
Zinger, Svitlana ;
Fukuta, Keisuke ;
Komura, Daisuke ;
Ovtcharov, Vlado ;
Cheng, Shenghua ;
Zeng, Shaoqun ;
Thagaard, Jeppe ;
Dahl, Anders B. ;
Lin, Huangjing ;
Chen, Hao ;
Jacobsson, Ludwig ;
Hedlund, Martin ;
Cetin, Melih ;
Halici, Eren ;
Jackson, Hunter ;
Chen, Richard ;
Both, Fabian ;
Franke, Joerg ;
Kusters-Vandevelde, Heidi ;
Vreuls, Willem ;
Bult, Peter ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Litjens, Geert .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) :550-560
[3]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[4]   Stain Specific Standardization of Whole-Slide Histopathological Images [J].
Bejnordi, Babak Ehteshami ;
Litjens, Geert ;
Timofeeva, Nadya ;
Otte-Holler, Irene ;
Homeyer, Andre ;
Karssemeijer, Nico ;
van der Laak, Jeroen A. W. M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (02) :404-415
[5]   Adversarial Stain Transfer for Histopathology Image Analysis [J].
BenTaieb, Aicha ;
Hamarneh, Ghassan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (03) :792-802
[6]   Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology [J].
Bera, Kaustav ;
Schalper, Kurt A. ;
Rimm, David L. ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) :703-715
[7]   Context-Based Normalization of Histological Stains Using Deep Convolutional Features [J].
Bug, D. ;
Schneider, S. ;
Grote, A. ;
Oswald, E. ;
Feuerhake, F. ;
Schueler, J. ;
Merhof, D. .
DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, 2017, 10553 :135-142
[8]   Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study [J].
Bulten, Wouter ;
Pinckaers, Hans ;
van Boven, Hester ;
Vink, Robert ;
de Bel, Thomas ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Hulsbergen-van de Kaa, Christina ;
Litjens, Geert .
LANCET ONCOLOGY, 2020, 21 (02) :233-241
[9]   Deep learning based tissue analysis predicts outcome in colorectal cancer [J].
Bychkov, Dmitrii ;
Linder, Nina ;
Turkki, Riku ;
Nordling, Stig ;
Kovanen, Panu E. ;
Verrill, Clare ;
Walliander, Margarita ;
Lundin, Mikael ;
Haglund, Caj ;
Lundin, Johan .
SCIENTIFIC REPORTS, 2018, 8
[10]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+