Quality control stress test for deep learning-based diagnostic model in digital pathology

被引:77
作者
Schoemig-Markiefka, Birgid [1 ]
Pryalukhin, Alexey
Hulla, Wolfgang [2 ]
Bychkov, Andrey [3 ,4 ]
Fukuoka, Junya [3 ,4 ]
Madabhushi, Anant [5 ,6 ]
Achter, Viktor [7 ]
Nieroda, Lech [7 ]
Buettner, Reinhard [1 ]
Quaas, Alexander [1 ]
Tolkach, Yuri [1 ]
机构
[1] Univ Hosp Cologne, Inst Pathol, Cologne, Germany
[2] Landesklinikum Wiener Neustadt, Inst Pathol, Wiener Neustadt, Austria
[3] Nagasaki Univ, Grad Sch Biomed Sci, Dept Pathol, Nagasaki, Japan
[4] Kameda Med Ctr, Dept Pathol, Kamogawa, Japan
[5] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
[6] Louis Stokes Cleveland Vet Adm Med Ctr, Cleveland, OH USA
[7] Univ Cologne, Reg Comp Ctr RRZK, Cologne, Germany
基金
美国国家卫生研究院;
关键词
PROSTATE-CANCER; SHARPNESS ASSESSMENT; QUANTIFICATION; NORMALIZATION; BIOPSIES;
D O I
10.1038/s41379-021-00859-x
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Digital pathology provides a possibility for computational analysis of histological slides and automatization of routine pathological tasks. Histological slides are very heterogeneous concerning staining, sections' thickness, and artifacts arising during tissue processing, cutting, staining, and digitization. In this study, we digitally reproduce major types of artifacts. Using six datasets from four different institutions digitized by different scanner systems, we systematically explore artifacts' influence on the accuracy of the pre-trained, validated, deep learning-based model for prostate cancer detection in histological slides. We provide evidence that any histological artifact dependent on severity can lead to a substantial loss in model performance. Strategies for the prevention of diagnostic model accuracy losses in the context of artifacts are warranted. Stress-testing of diagnostic models using synthetically generated artifacts might be an essential step during clinical validation of deep learning-based algorithms.
引用
收藏
页码:2098 / 2108
页数:11
相关论文
共 48 条
  • [1] Towards better digital pathology workflows: programming libraries for high-speed sharpness assessment of Whole Slide Images
    Ameisen, David
    Deroulers, Christophe
    Perrier, Valerie
    Bouhidel, Fatiha
    Battistella, Maxime
    Legres, Luc
    Janin, Anne
    Bertheau, Philippe
    Yunes, Jean-Baptiste
    [J]. DIAGNOSTIC PATHOLOGY, 2014, 9
  • [2] From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge
    Bandi, Peter
    Geessink, Oscar
    Manson, Quirine
    van Dijk, Marcory
    Balkenhol, Maschenka
    Hermsen, Meyke
    Bejnordi, Babak Ehteshami
    Lee, Byungjae
    Paeng, Kyunghyun
    Zhong, Aoxiao
    Li, Quanzheng
    Zanjani, Farhad Ghazvinian
    Zinger, Svitlana
    Fukuta, Keisuke
    Komura, Daisuke
    Ovtcharov, Vlado
    Cheng, Shenghua
    Zeng, Shaoqun
    Thagaard, Jeppe
    Dahl, Anders B.
    Lin, Huangjing
    Chen, Hao
    Jacobsson, Ludwig
    Hedlund, Martin
    Cetin, Melih
    Halici, Eren
    Jackson, Hunter
    Chen, Richard
    Both, Fabian
    Franke, Joerg
    Kusters-Vandevelde, Heidi
    Vreuls, Willem
    Bult, Peter
    van Ginneken, Bram
    van der Laak, Jeroen
    Litjens, Geert
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) : 550 - 560
  • [3] Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer
    Bejnordi, Babak Ehteshami
    Veta, Mitko
    van Diest, Paul Johannes
    van Ginneken, Bram
    Karssemeijer, Nico
    Litjens, Geert
    van der Laak, Jeroen A. W. M.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22): : 2199 - 2210
  • [4] Stain Specific Standardization of Whole-Slide Histopathological Images
    Bejnordi, Babak Ehteshami
    Litjens, Geert
    Timofeeva, Nadya
    Otte-Holler, Irene
    Homeyer, Andre
    Karssemeijer, Nico
    van der Laak, Jeroen A. W. M.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (02) : 404 - 415
  • [5] Adversarial Stain Transfer for Histopathology Image Analysis
    BenTaieb, Aicha
    Hamarneh, Ghassan
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (03) : 792 - 802
  • [6] Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology
    Bera, Kaustav
    Schalper, Kurt A.
    Rimm, David L.
    Velcheti, Vamsidhar
    Madabhushi, Anant
    [J]. NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) : 703 - 715
  • [7] Context-Based Normalization of Histological Stains Using Deep Convolutional Features
    Bug, D.
    Schneider, S.
    Grote, A.
    Oswald, E.
    Feuerhake, F.
    Schueler, J.
    Merhof, D.
    [J]. DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, 2017, 10553 : 135 - 142
  • [8] Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study
    Bulten, Wouter
    Pinckaers, Hans
    van Boven, Hester
    Vink, Robert
    de Bel, Thomas
    van Ginneken, Bram
    van der Laak, Jeroen
    Hulsbergen-van de Kaa, Christina
    Litjens, Geert
    [J]. LANCET ONCOLOGY, 2020, 21 (02) : 233 - 241
  • [9] Deep learning based tissue analysis predicts outcome in colorectal cancer
    Bychkov, Dmitrii
    Linder, Nina
    Turkki, Riku
    Nordling, Stig
    Kovanen, Panu E.
    Verrill, Clare
    Walliander, Margarita
    Lundin, Mikael
    Haglund, Caj
    Lundin, Johan
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [10] Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
    Campanella, Gabriele
    Hanna, Matthew G.
    Geneslaw, Luke
    Miraflor, Allen
    Silva, Vitor Werneck Krauss
    Busam, Klaus J.
    Brogi, Edi
    Reuter, Victor E.
    Klimstra, David S.
    Fuchs, Thomas J.
    [J]. NATURE MEDICINE, 2019, 25 (08) : 1301 - +