Fano manifolds of Calabi-Yau Hodge type

被引:24
作者
Iliev, Atanas [1 ]
Manivel, Laurent [2 ]
机构
[1] Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
[2] Univ Montreal, Montreal, PQ H3T 1J4, Canada
关键词
COHOMOLOGY; MIRROR;
D O I
10.1016/j.jpaa.2014.07.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and we study a class of odd dimensional compact complex manifolds whose Hodge structure in middle dimension looks like that of a Calabi-Yau threefold. We construct several series of interesting examples from rational homogeneous spaces with special properties. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:2225 / 2244
页数:20
相关论文
共 22 条
[1]  
Beauville A, 2000, MICH MATH J, V48, P39
[2]   THEOREMS ON ACTIONS OF ALGEBRAIC GROUPS [J].
BIALYNIC.A .
ANNALS OF MATHEMATICS, 1973, 98 (03) :480-497
[3]  
BORCEA C, 1983, J REINE ANGEW MATH, V344, P65
[4]   GENERALIZED CALABI-YAU MANIFOLDS AND THE MIRROR OF A RIGID MANIFOLD [J].
CANDELAS, P ;
DERRICK, E ;
PARKES, L .
NUCLEAR PHYSICS B, 1993, 407 (01) :115-154
[5]   Cohomologies of a double covering of a non-singular algebraic 3-fold [J].
Cynk, S .
MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (04) :731-743
[6]  
Donagi R., 1996, ISRAEL MATH C P, V9, P199
[7]   Special Kahler manifolds [J].
Freed, DS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (01) :31-52
[8]  
Gelfand I.M., 1994, DISCRIMINANTS RESULT
[9]   CLASSIFICATION OF SPINORS UP TO DIMENSION -12 [J].
IGUSA, JI .
AMERICAN JOURNAL OF MATHEMATICS, 1970, 92 (04) :997-&
[10]   The chow ring of the cayley plane [J].
Iliev, A ;
Manivel, L .
COMPOSITIO MATHEMATICA, 2005, 141 (01) :146-160