Normalized dimensionality reduction using nonnegative matrix factorization

被引:5
作者
Zhu, Zhenfeng [1 ]
Guo, Yue-Fei [1 ]
Zhu, Xingquan [2 ,3 ]
Xue, Xiangyang [1 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
[2] Univ Technol Sydney, QCIS Ctr, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
[3] Chinese Acad Sci, FEDS Ctr, Grad Univ, Beijing 100190, Peoples R China
基金
澳大利亚研究理事会; 国家高技术研究发展计划(863计划);
关键词
Subspace learning; Nonnegative matrix factorization; Dimensionality reduction; Normalization; Sparsity;
D O I
10.1016/j.neucom.2009.11.046
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an iterative normalized compression method for dimensionality reduction using non-negative matrix factorization (NCMF). To factorize the instance matrix X into C x M, an objective function is defined to impose the normalization constraints to the basis matrix C and the coefficient matrix M. We argue that in many applications, instances are often normalized in one way or the other. By integrating data normalization constraints into the objective function and transposing the instance matrix, one can directly discover relations among different dimensions and devise effective and efficient procedure for matrix factorization. In the paper, we assume that feature dimensions in instance matrix are normalized, and propose an iterative solution NCMF to achieve rapid matrix factorization for dimensionality reduction. As a result, the basis matrix can be viewed as a compression matrix and the coefficient matrix becomes a mapping matrix. NCMF is simple, effective, and only needs to initialize the mapping matrix. Experimental comparisons on text, biological and image data demonstrate that NCMF gains 21.02% computational time reduction, 39.60% sparsity improvement for mapping matrix, and 8.59% clustering accuracy improvement. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1783 / 1793
页数:11
相关论文
共 50 条
  • [21] Dimensionality Reduction, Classification, and Spectral Mixture Analysis using Nonnegative Underapproximation
    Gillis, Nicolas
    Plemmons, Robert J.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVI, 2010, 7695
  • [22] A robust dimensionality reduction and matrix factorization framework for data clustering
    Li, Ruyue
    Zhang, Lefei
    Du, Bo
    PATTERN RECOGNITION LETTERS, 2019, 128 : 440 - 446
  • [23] Text mining using nonnegative matrix factorization and latent semantic analysis
    Ali Hassani
    Amir Iranmanesh
    Najme Mansouri
    Neural Computing and Applications, 2021, 33 : 13745 - 13766
  • [24] Text mining using nonnegative matrix factorization and latent semantic analysis
    Hassani, Ali
    Iranmanesh, Amir
    Mansouri, Najme
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (20) : 13745 - 13766
  • [25] Quadratic nonnegative matrix factorization
    Yang, Zhirong
    Oja, Erkki
    PATTERN RECOGNITION, 2012, 45 (04) : 1500 - 1510
  • [26] Elastic Nonnegative Matrix Factorization
    Ballen, Peter
    Guha, Sudipto
    2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 1271 - 1278
  • [27] ON THE COMPLEXITY OF NONNEGATIVE MATRIX FACTORIZATION
    Vavasis, Stephen A.
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (03) : 1364 - 1377
  • [28] WEIGHTED NONNEGATIVE MATRIX FACTORIZATION
    Kim, Yang-Deok
    Choi, Seungjin
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1541 - 1544
  • [29] NONNEGATIVE UNIMODAL MATRIX FACTORIZATION
    Ang, Andersen Man Shun
    Gillis, Nicolas
    Vandaele, Arnaud
    De Sterck, Hans
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3270 - 3274
  • [30] SPEECH ENHANCEMENT USING SEGMENTAL NONNEGATIVE MATRIX FACTORIZATION
    Fan, Hao-Teng
    Hung, Jeih-weih
    Lu, Xugang
    Wang, Syu-Siang
    Tsao, Yu
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,