On a Nonparametric Change Point Detection Model in Markovian Regimes

被引:22
|
作者
Fabian Martinez, Asael [1 ]
Mena, Ramses H. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico
来源
BAYESIAN ANALYSIS | 2014年 / 9卷 / 04期
关键词
Bayesian nonparametric; Change point detection; Ornstein-Uhlenbeck process; Two-parameter Poisson-Dirichlet process; PRODUCT PARTITION MODEL; BAYESIAN-ANALYSIS; TIME-SERIES; PROBABILITY; INFERENCE; SEQUENCE;
D O I
10.1214/14-BA878
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Change point detection models aim to determine the most probable grouping for a given sample indexed on an ordered set. For this purpose, we propose a methodology based on exchangeable partition probability functions, specifically on Pitman's sampling formula. Emphasis will be given to the Markovian case, in particular for discretely observed Ornstein-Uhlenbeck diffusion processes. Some properties of the resulting model are explained and posterior results are obtained via a novel Markov chain Monte Carlo algorithm.
引用
收藏
页码:823 / 857
页数:35
相关论文
共 50 条
  • [41] On Matched Filtering for Statistical Change Point Detection
    Cheng, Kevin C.
    Miller, Eric L.
    Hughes, Michael C.
    Aeron, Shuchin
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2020, 1 : 159 - 176
  • [42] Novel semi-metrics for multivariate change point analysis and anomaly detection
    James, Nick
    Menzies, Max
    Azizi, Lamiae
    Chan, Jennifer
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 412
  • [43] Change point detection for a skew normal distribution based on the Q-function
    Du, Yang
    Cheng, Weihu
    AIMS MATHEMATICS, 2024, 9 (10): : 28698 - 28721
  • [44] A Bayesian method of change-point estimation with recurrent regimes: Application to GARCH models
    Bauwens, Luc
    De Backer, Bruno
    Dufays, Arnaud
    JOURNAL OF EMPIRICAL FINANCE, 2014, 29 : 207 - 229
  • [45] Two tests for sequential detection of a change-point in a nonlinear model
    Ciuperca, Gabriela
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (10) : 1719 - 1743
  • [46] Change point detection in Cox proportional hazards mixture cure model
    Wang, Bing
    Li, Jialiang
    Wang, Xiaoguang
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (02) : 440 - 457
  • [47] Multipartition model for multiple change point identification
    Pedroso, Ricardo C.
    Loschi, Rosangela H.
    Quintana, Fernando Andres
    TEST, 2023, 32 (02) : 759 - 783
  • [48] A new PIN model with application of the change-point detection method
    Kao, Chu-Lan Michael
    Lin, Emily
    REVIEW OF QUANTITATIVE FINANCE AND ACCOUNTING, 2023, 61 (04) : 1513 - 1528
  • [49] Empirical likelihood for change point detection in autoregressive models
    Gamage, Ramadha D. Piyadi
    Ning, Wei
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2021, 50 (01) : 69 - 97
  • [50] Latent Stochastic Differential Equations for Change Point Detection
    Ryzhikov, Artem
    Hushchyn, Mikhail
    Derkach, Denis
    IEEE ACCESS, 2023, 11 : 104700 - 104711