On a Nonparametric Change Point Detection Model in Markovian Regimes

被引:22
|
作者
Fabian Martinez, Asael [1 ]
Mena, Ramses H. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico
来源
BAYESIAN ANALYSIS | 2014年 / 9卷 / 04期
关键词
Bayesian nonparametric; Change point detection; Ornstein-Uhlenbeck process; Two-parameter Poisson-Dirichlet process; PRODUCT PARTITION MODEL; BAYESIAN-ANALYSIS; TIME-SERIES; PROBABILITY; INFERENCE; SEQUENCE;
D O I
10.1214/14-BA878
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Change point detection models aim to determine the most probable grouping for a given sample indexed on an ordered set. For this purpose, we propose a methodology based on exchangeable partition probability functions, specifically on Pitman's sampling formula. Emphasis will be given to the Markovian case, in particular for discretely observed Ornstein-Uhlenbeck diffusion processes. Some properties of the resulting model are explained and posterior results are obtained via a novel Markov chain Monte Carlo algorithm.
引用
收藏
页码:823 / 857
页数:35
相关论文
共 50 条
  • [31] Subspace Change Point Detection Under Spiked Wigner Model
    Ye, Jia
    Xu, Yinfei
    Wang, Qiao
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 1995 - 2010
  • [32] Model-Free Change Point Detection for Mixing Processes
    Chen, Hao
    Gupta, Abhishek
    Sun, Yin
    Shroff, Ness
    IEEE OPEN JOURNAL OF CONTROL SYSTEMS, 2024, 3 : 202 - 213
  • [33] Topic change point detection using a mixed Bayesian model
    Lu, Xiaoling
    Guo, Yuxuan
    Chen, Jiayi
    Wang, Feifei
    DATA MINING AND KNOWLEDGE DISCOVERY, 2022, 36 (01) : 146 - 173
  • [34] Subspace Change-Point Detection: A New Model and Solution
    Jiao, Yuchen
    Chen, Yanxi
    Gu, Yuantao
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (06) : 1224 - 1239
  • [35] Optimal change point detection in Gaussian processes
    Keshavarz, Hossein
    Scott, Clayton
    Nguyen, XuanLong
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2018, 193 : 151 - 178
  • [36] Multiscale change point detection for dependent data
    Dette, Holger
    Eckle, Theresa
    Vetter, Mathias
    SCANDINAVIAN JOURNAL OF STATISTICS, 2020, 47 (04) : 1243 - 1274
  • [37] A Survey of Change Point Detection in Dynamic Graphs
    Zhou, Yuxuan
    Gao, Shang
    Guo, Dandan
    Wei, Xiaohui
    Rokne, Jon
    Wang, Hui
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (03) : 1030 - 1048
  • [38] OPTIMAL CHANGE-POINT DETECTION AND LOCALIZATION
    Verzelen, Nicolas
    Fromont, Magalie
    Lerasle, Matthieu
    Reynaud-Bouret, Patricia
    ANNALS OF STATISTICS, 2023, 51 (04) : 1586 - 1610
  • [39] Change point detection for compositional multivariate data
    K. J., Prabuchandran
    Singh, Nitin
    Dayama, Pankaj
    Agarwal, Ashutosh
    Pandit, Vinayaka
    APPLIED INTELLIGENCE, 2022, 52 (02) : 1930 - 1955
  • [40] Topic change point detection using a mixed Bayesian model
    Xiaoling Lu
    Yuxuan Guo
    Jiayi Chen
    Feifei Wang
    Data Mining and Knowledge Discovery, 2022, 36 : 146 - 173