On a Nonparametric Change Point Detection Model in Markovian Regimes

被引:22
|
作者
Fabian Martinez, Asael [1 ]
Mena, Ramses H. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico
来源
BAYESIAN ANALYSIS | 2014年 / 9卷 / 04期
关键词
Bayesian nonparametric; Change point detection; Ornstein-Uhlenbeck process; Two-parameter Poisson-Dirichlet process; PRODUCT PARTITION MODEL; BAYESIAN-ANALYSIS; TIME-SERIES; PROBABILITY; INFERENCE; SEQUENCE;
D O I
10.1214/14-BA878
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Change point detection models aim to determine the most probable grouping for a given sample indexed on an ordered set. For this purpose, we propose a methodology based on exchangeable partition probability functions, specifically on Pitman's sampling formula. Emphasis will be given to the Markovian case, in particular for discretely observed Ornstein-Uhlenbeck diffusion processes. Some properties of the resulting model are explained and posterior results are obtained via a novel Markov chain Monte Carlo algorithm.
引用
收藏
页码:823 / 857
页数:35
相关论文
共 50 条
  • [1] Bayesian nonparametric change point detection for multivariate time series with missing observations
    Corradin, Riccardo
    Danese, Luca
    Ongaro, Andrea
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 143 : 26 - 43
  • [2] Adaptive Sliding Kalman Filter using Nonparametric Change Point Detection
    Poddar, Shashi
    Kottath, Rahul
    Kumar, Vipan
    Kumar, Amod
    MEASUREMENT, 2016, 82 : 410 - 420
  • [3] Change point detection for nonparametric regression under strongly mixing process
    Yang, Qing
    Li, Yu-Ning
    Zhang, Yi
    STATISTICAL PAPERS, 2020, 61 (04) : 1465 - 1506
  • [4] Optimal Nonparametric Multivariate Change Point Detection and Localization
    Padilla, Oscar Hernan Madrid
    Yu, Yi
    Wang, Daren
    Rinaldo, Alessandro
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (03) : 1922 - 1944
  • [5] Nonparametric Bayesian online change point detection using kernel density estimation with nonparametric hazard function
    Prabpon, Naruesorn
    Homsud, Kitakorn
    Vatiwutipong, Pat
    STATISTICS AND COMPUTING, 2024, 34 (02)
  • [6] Simple nonparametric tests for change point detection in time series
    Klyushin, Dmitriy
    2022 IEEE 17TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND INFORMATION TECHNOLOGIES (CSIT), 2022, : 152 - 155
  • [7] Nonparametric Bayesian approach to the detection of change point in statistical process control
    Suleiman, Issah N.
    Bakir, M. Akif
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (03): : 525 - 545
  • [8] Change point detection for nonparametric regression under strongly mixing process
    Qing Yang
    Yu-Ning Li
    Yi Zhang
    Statistical Papers, 2020, 61 : 1465 - 1506
  • [9] On change point detection in regression function using nonparametric autoregressive processes
    Kouassi, Ben Celestin
    Hili, Ouagnina
    Katchekpele, Edoh
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2025, 56 (01) : 191 - 209
  • [10] Change-Point Detection of Climate Time Series by Nonparametric Method
    Itoh, Naoki
    Kurths, Juergen
    WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, VOLS 1 AND 2, 2010, : 445 - 448