The in-situ construction of NiFe sulfide with nanoarray structure on nickel foam as efficient bifunctional electrocatalysts for overall water splitting

被引:50
|
作者
Yang, Yuying [1 ]
Meng, Haixia [1 ]
Yan, Shaohui [1 ]
Zhu, Hong [1 ]
Ma, Weixia [1 ]
Wang, Chengjuan [1 ]
Ma, Fuquan [1 ]
Hu, Zhongai [1 ]
机构
[1] Northwest Normal Univ, Coll Chem & Chem Engn, Key Lab Polymer Mat Gansu Prov, Key Lab Ecoenvironm Related Polymer Mat,Minist Ed, Lanzhou 730070, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal sulfide; Bifunctional catalyst; OER; HER; Overall water splitting; OXYGEN EVOLUTION REACTION; HIGHLY-EFFICIENT; NANOSHEET; HYDROGEN; REDUCTION; CATALYSIS; ARRAYS;
D O I
10.1016/j.jallcom.2021.159874
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing high-efficiency, stable and cost-effective non-noble metal-based bifunctional electrocatalysts is crucial for the overall water splitting to produce clean hydrogen energy. Nanoarray structures electrocatalysts have attracted increasing research interests due to its structural advantages. Herein, Ni3S2/Fe9S10 with two dimensions (2D) nanosheet arrays in-situ growth on three dimensions (3D) nickel foam (Ni3S2/Fe9S10@NF) was prepared by step-wise hydrothermal method. Ni3S2/Fe9S10@NF was derived from NiFe layered double hydroxides, and the as-prepared Ni3S2/Fe9S10@NF electrode was directly served as a bifunctional catalyst for electrolysis of water. Benefiting from the directly contact with conductive Ni foam substrate, the positive synergy effect between Ni and Fe in the Ni3S2/Fe9S10@NF catalyst and its open 3D porous structure, the binder-free and integrated Ni3S2/Fe9S10@NF electrode displayed excellent catalytic activities towards hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), the overpotential for HER and OER are only 56 and 147 mV at 10 mA cm(-2), respectively. Particularly, when the prepared Ni3S2/Fe9S10@NF further employed as both the cathode and anode electrocatalysts a symmetric cell Ni3S2/Fe9S10@NF vertical bar vertical bar Ni3S2/Fe9S10@NF, a low cell voltage of 1.43 V was achieved at 10 mA cm(-2), with good stability. This work not only illustrated that non-noble metal-based electrocatalysts have tremendous potential applications for electrocatalytic electrolysis of water but also provided a feasible strategy to prepare high-efficiency and stable non- precious metal catalysts. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Flower-like NiFe Oxide Nanosheets on Ni Foam as Efficient Bifunctional Electrocatalysts for the Overall Water Splitting
    Li, Bo
    Feng, Qin
    Jiang, Feng
    Peng, Lizhi
    Liu, Tianfu
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (05): : 4878 - 4890
  • [2] In-situ synthesis of hierarchical NiFe-LDH/NiO nanoflowers on nickel foam as bifunctional catalyst for overall water splitting
    Liao, Dongcai
    Liu, Xuemei
    Zong, Shichao
    Zheng, Dan
    Ren, Wenxia
    Bai, Bo
    Geng, Jiafeng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 107 : 312 - 320
  • [3] Amorphous NiFe Nanotube Arrays Bifunctional Electrocatalysts for Efficient Electrochemical Overall Water Splitting
    Xu, Lu
    Zhang, Fu-Tao
    Chen, Jia-Hui
    Fu, Xian-Zhu
    Sun, Rong
    Wong, Ching-Ping
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (03): : 1210 - 1217
  • [4] Molybdenum carbide in-situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting
    Xing, Jiangnan
    Li, Yang
    Guo, Siwei
    Jin, Ting
    Li, Haixia
    Wang, Yijing
    Jiao, Lifang
    ELECTROCHIMICA ACTA, 2019, 298 : 305 - 312
  • [5] Phosphorus and Yttrium Codoped Co(OH)F Nanoarray as Highly Efficient and Bifunctional Electrocatalysts for Overall Water Splitting
    Zhang, Gengwei
    Wang, Bin
    Li, Lu
    Yang, Shengchun
    SMALL, 2019, 15 (42)
  • [6] In-situ construction of vertically Fe doped CoMoP nanosheet honeycomb as bifunctional electrocatalysts for efficient overall water splitting
    Zhao, Bingxin
    Jiang, Wenyue
    Li, Ziting
    Zhou, Peng
    Chen, Xiaoshuang
    Wang, Jinping
    Yang, Rui
    Zuo, Chunling
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 682 : 1094 - 1103
  • [7] Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting
    Zhu, Wenxin
    Yue, Xiaoyue
    Zhang, Wentao
    Yu, Shaoxuan
    Zhang, Yuhuan
    Wang, Jing
    Wang, Jianlong
    CHEMICAL COMMUNICATIONS, 2016, 52 (07) : 1486 - 1489
  • [8] In-situ growth of iron/nickel phosphides hybrid on nickel foam as bifunctional electrocatalyst for overall water splitting
    Xu, Xiao
    Tian, Xuemin
    Zhong, Zhou
    Kang, Longtian
    Yao, Jiannian
    JOURNAL OF POWER SOURCES, 2019, 424 : 42 - 51
  • [9] Self-supported NiFe-LDH@CoSx nanosheet arrays grown on nickel foam as efficient bifunctional electrocatalysts for overall water splitting
    Yang, Yan
    Xie, Yuchen
    Yu, Zihuan
    Guo, Shaoshi
    Yuan, Mengwei
    Yao, Huiqin
    Liang, Zupei
    Lu, Ying Rui
    Chan, Ting-Shan
    Li, Cheng
    Dong, Hongliang
    Ma, Shulan
    CHEMICAL ENGINEERING JOURNAL, 2021, 419
  • [10] Facile Construction of IrRh Nanosheet Assemblies As Efficient and Robust Bifunctional Electrocatalysts for Overall Water Splitting
    Li, Chunjie
    Xu, You
    Liu, Songliang
    Yin, Shuli
    Yu, Hongjie
    Wang, Zigiang
    Li, Xiaonian
    Wang, Liang
    Wango, Hongjing
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (18): : 15747 - 15754