Reproducible fabrication of metallic silver nanostructures on a Si(111)-(7x7) surface by tip-material transfer of a scanning tunneling microscope

被引:14
作者
Fujita, D [1 ]
Kumakura, T [1 ]
机构
[1] Natl Inst Mat Sci, Nanomat Lab, Tsukuba, Ibaraki 3050047, Japan
关键词
D O I
10.1063/1.1565509
中图分类号
O59 [应用物理学];
学科分类号
摘要
A technique for reproducible fabrication of nanometer-scale silver dots, wires, characters, and figures on a Si(111) surface in ultrahigh vacuum using scanning tunneling microscopy and their electronic properties are presented. This method allows patterns to be formed at will by the computer-controlled application of voltage pulses between a silver-coated tip and the surface. Scanning tunneling spectroscopy shows unambiguous metallic behavior on the nanodots and depletion layer formation in the neighboring region. The dominant mechanism of nanodot formation can be attributed to the spontaneous formation of a point contact due to field-enhanced diffusion of silver atoms to the tip apex. (C) 2003 American Institute of Physics.
引用
收藏
页码:2329 / 2331
页数:3
相关论文
共 14 条
[1]   FIELD EVAPORATION BETWEEN A GOLD TIP AND A GOLD SURFACE IN THE SCANNING TUNNELING MICROSCOPE CONFIGURATION [J].
CHANG, CS ;
SU, WB ;
TSONG, TT .
PHYSICAL REVIEW LETTERS, 1994, 72 (04) :574-577
[2]   CREATION OF NANOSTRUCTURES ON GOLD SURFACES IN NONCONDUCTING LIQUID [J].
CHANG, TC ;
CHANG, CS ;
LIN, HN ;
TSONG, TT .
APPLIED PHYSICS LETTERS, 1995, 67 (07) :903-905
[3]   Fabrication of gold nanostructures on a vicinal Si(111) 7x7 surface using ultrahigh vacuum scanning tunneling microscope and a gold-coated tungsten tip [J].
Fujita, D ;
Jiang, QD ;
Nejoh, H .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (06) :3413-3419
[4]   Nanostructure fabrication with a point contact formation between a gold tip and a Si(111)-(7x7) surface with an ultrahigh vacuum scanning tunneling microscope [J].
Fujita, D ;
Sheng, HY ;
Dong, ZC ;
Nejoh, H .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 66 (Suppl 1) :S753-S756
[5]   Nanostructure fabrication on silicon surfaces by atom transfer from a gold tip using an ultrahigh vacuum scanning tunneling microscope [J].
Fujita, D ;
Jiang, QD ;
Dong, ZC ;
Sheng, HY ;
Nejoh, H .
NANOTECHNOLOGY, 1997, 8 :A10-A14
[6]   DEPOSITION OF METAL NANOSTRUCTURES ONTO SI(111) SURFACES BY FIELD EVAPORATION IN THE SCANNING TUNNELING MICROSCOPE [J].
HSIAO, GS ;
PENNER, RM ;
KINGSLEY, J .
APPLIED PHYSICS LETTERS, 1994, 64 (11) :1350-1352
[7]   Application of scanning tunneling microscopy to aluminum nanocluster deposition on silicon [J].
Hu, XM ;
von Blanckenhagen, P .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1999, 17 (02) :265-268
[8]  
LUTH H, 1995, SURFACES INTERFACES, P426
[9]   ATOMIC EMISSION FROM A GOLD SCANNING-TUNNELING-MICROSCOPE TIP [J].
MAMIN, HJ ;
GUETHNER, PH ;
RUGAR, D .
PHYSICAL REVIEW LETTERS, 1990, 65 (19) :2418-2421
[10]   Polarity dependence in pulsed scanning tunneling microscopy fabrication and modification of metal nanodots on silicon [J].
Park, JY ;
Phaneuf, RJ .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (04) :2139-2143