The duality theorem for min-max functions

被引:63
作者
Gaubert, S
Gunawardena, J
机构
[1] Inst Natl Rech Informat & Automat, F-78153 Le Chesnay, France
[2] Hewlett Packard Labs, BRIMS, Bristol BS12 6QZ, Avon, England
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 326卷 / 01期
关键词
D O I
10.1016/S0764-4442(97)82710-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The set of min-max functions F : R-n --> R-n is the least set containing coordinate substitutions and translations and closed under pointwise max, min, and function composition. The Duality Conjecture asserts that the trajectories of a min-max function, considered as a dynamical system, have a linear growth rate (cycle time) and shows how this can be calculated through a representation of F as an infimum of max-plus linear functions. We prove the conjecture using an analogue of Howards policy improvement scheme, carried out in a lattice ordered group of germs of affine functions at infinity. The methods yield an efficient algorithm for computing cycle times.
引用
收藏
页码:43 / 48
页数:6
相关论文
共 20 条
[1]  
Baccelli F, 1992, SYNCHRONIZATION LINE
[2]  
COCHETTERRASSON J, 1987, UNPUB DYNAMIC MIN MA
[3]  
COCHETTERRASSON S, 1997, HPLBRIMS9713
[4]   SOME RELATIONS BETWEEN NONEXPANSIVE AND ORDER PRESERVING MAPPINGS [J].
CRANDALL, MG ;
TARTAR, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 78 (03) :385-390
[5]  
Cuninghame-Green RA., 1979, Minimax Algebra
[6]  
CUNINGHAMEGREEN RA, 1995, ADV IMAGING ELECT PH, V90
[7]  
GAUBERT S, 1997, LNCS, V1200
[8]  
GAUBERT S, 1997, UNPUB PROOF DUALITY
[9]  
GUNAWARDENA J, 1994, J DISCRETE EVENT DYN, V4, P377
[10]  
Gunawardena J., 1994, LECT NOTES CONTR INF, V199, P266