Predicting Progression to Advanced Age-Related Macular Degeneration from Clinical, Genetic, and Lifestyle Factors Using Machine Learning

被引:36
作者
Ajana, Soufiane [1 ]
Cougnard-Gregoire, Audrey [1 ]
Colijn, Johanna M. [2 ,3 ]
Merle, Benedicte M. J. [1 ]
Verzijden, Timo [2 ,3 ]
de Jong, Paulus T. V. M. [4 ,5 ,6 ]
Hofman, Albert [3 ,7 ]
Vingerling, Johannes R. [2 ]
Hejblum, Boris P. [1 ,8 ]
Korobelnik, Jean-Francois [1 ,9 ]
Meester-Smoor, Magda A. [2 ,3 ]
Ueffing, Marius [10 ]
Jacqmin-Gadda, Helene [1 ]
Klaver, Caroline C. W. [2 ,3 ,11 ,12 ]
Delcourt, Cecile [1 ]
机构
[1] Univ Bordeaux, Bordeaux Populat Hlth Res Ctr, INSERM, Bordeaux, France
[2] Erasmus MC, Dept Ophthalmol, Rotterdam, Netherlands
[3] Erasmus MC, Dept Epidemiol, Rotterdam, Netherlands
[4] Amsterdam Univ MC, KNAW, Dept Retinal Signal Proc, Netherlands Inst Neurosci, Amsterdam, Netherlands
[5] Amsterdam Univ MC, Dept Ophthalmol, Amsterdam, Netherlands
[6] Leiden Univ MC, Dept Ophthalmol, Leiden, Netherlands
[7] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[8] Bordeaux Sud Ouest, SISTM, INRIA, Bordeaux, France
[9] Bordeaux Univ Hosp, Dept Ophthalmol, Bordeaux, France
[10] Univ Tubingen, Dept Ophthalmol, Inst Ophthalm Res, Tubingen, Germany
[11] Radboud Univ Nijmegen, Dept Ophthalmol, Med Ctr, Nijmegen, Netherlands
[12] Inst Mol & Clin Ophthalmol Basel, Basel, Switzerland
基金
欧盟地平线“2020”;
关键词
Age-related macular degeneration; Genetics; Lifestyle; Nutrition; Personalized medicine; Prediction; Smoking;
D O I
10.1016/j.ophtha.2020.08.031
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: Current prediction models for advanced age-related macular degeneration (AMD) are based on a restrictive set of risk factors. The objective of this study was to develop a comprehensive prediction model applying a machine learning algorithm allowing selection of the most predictive risk factors automatically. Design: Two population-based cohort studies. Participants: The Rotterdam Study I (RS-I; training set) included 3838 participants 55 years of age or older, with a median follow-up period of 10.8 years, and 108 incident cases of advanced AMD. The Antioxydants, Lipids Essentiels, Nutrition et Maladies Oculaires (ALIENOR) study (test set) included 362 participants 73 years of age or older, with a median follow-up period of 6.5 years, and 33 incident cases of advanced AMD. Methods: The prediction model used the bootstrap least absolute shrinkage and selection operator (LASSO) method for survival analysis to select the best predictors of incident advanced AMD in the training set. Predictive performance of the model was assessed using the area under the receiver operating characteristic curve (AUC). Main Outcome Measures: Incident advanced AMD (atrophic, neovascular, or both), based on standardized interpretation of retinal photographs. Results: The prediction model retained (1) age, (2) a combination of phenotypic predictors (based on the presence of intermediate drusen, hyperpigmentation in one or both eyes, and Age-Related Eye Disease Study simplified score), (3) a summary genetic risk score based on 49 single nucleotide polymorphisms, (4) smoking, (5) diet quality, (6) education, and (7) pulse pressure. The cross-validated AUC estimation in RS-I was 0.92 (95% confidence interval [CI], 0.88-0.97) at 5 years, 0.92 (95% CI, 0.90-0.95) at 10 years, and 0.91 (95% CI, 0.88-0.94) at 15 years. In ALIENOR, the AUC reached 0.92 at 5 years (95% CI, 0.87-0.98). In terms of calibration, the model tended to underestimate the cumulative incidence of advanced AMD for the high-risk groups, especially in ALIENOR. Conclusions: This prediction model reached high discrimination abilities, paving the way toward making precision medicine for AMD patients a reality in the near future. (C) 2020 by the American Academy of Ophthalmology
引用
收藏
页码:587 / 597
页数:11
相关论文
共 53 条
  • [1] Anand R, 2000, OPHTHALMOLOGY, V107, P2224
  • [2] Bach FR, P 25 INT C MACH LEAR
  • [3] AN INTERNATIONAL CLASSIFICATION AND GRADING SYSTEM FOR AGE-RELATED MACULOPATHY AND AGE-RELATED MACULAR DEGENERATION
    BIRD, AEC
    BRESSLER, NM
    BRESSLER, SB
    CHISHOLM, IH
    COSCAS, G
    DAVIS, MD
    DEJONG, PTVM
    KLAVER, CCW
    KLEIN, BEK
    KLEIN, R
    MITCHELL, P
    SARKS, JP
    SARKS, SH
    SOURBANE, G
    TAYLOR, HR
    VINGERLING, JR
    [J]. SURVEY OF OPHTHALMOLOGY, 1995, 39 (05) : 367 - 374
  • [4] Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks
    Blanche, Paul
    Dartigues, Jean-Francois
    Jacqmin-Gadda, Helene
    [J]. STATISTICS IN MEDICINE, 2013, 32 (30) : 5381 - 5397
  • [5] Causes of vision loss worldwide, 1990-2010: a systematic analysis
    Bourne, Rupert R. A.
    Stevens, Gretchen A.
    White, Richard A.
    Smith, Jennifer L.
    Flaxman, Seth R.
    Price, Holly
    Jonas, Jost B.
    Keeffe, Jill
    Leasher, Janet
    Naidoo, Kovin
    Pesudovs, Konrad
    Resnikoff, Serge
    Taylor, Hugh R.
    [J]. LANCET GLOBAL HEALTH, 2013, 1 (06): : E339 - E349
  • [6] Breiman L, 1996, ANN STAT, V24, P2350
  • [7] Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1007/BF00058655
  • [8] Prediction of Age-related Macular Degeneration in the General Population The Three Continent AMD Consortium
    Buitendijk, Gabrielle H. S.
    Rochtchina, Elena
    Myers, Chelsea
    van Duijn, Cornelia M.
    Lee, Kristine E.
    Klein, Barbara E. K.
    Meuer, Stacy M.
    de Jong, Paulus T. V. M.
    Holliday, Elizabeth G.
    Tan, Ava G.
    Uitterlinden, Andre G.
    Sivakumaran, Theru S.
    Attia, John
    Hofman, Albert
    Mitchell, Paul
    Vingerling, Johannes R.
    Iyengar, Sudha K.
    Janssens, A. Cecile J. W.
    Wang, Jie Jin
    Klein, Ronald
    Klaver, Caroline C. W.
    [J]. OPHTHALMOLOGY, 2013, 120 (12) : 2644 - 2655
  • [9] Use of Deep Learning for Detailed Severity Characterization and Estimation of 5-Year Risk Among Patients With Age-Related Macular Degeneration
    Burlina, Philippe M.
    Joshi, Neil
    Pacheco, Katia D.
    Freund, David E.
    Kong, Jun
    Bressler, Neil M.
    [J]. JAMA OPHTHALMOLOGY, 2018, 136 (12) : 1359 - 1366
  • [10] Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks
    Burlina, Philippe M.
    Joshi, Neil
    Pekala, Michael
    Pacheco, Katia D.
    Freund, David E.
    Bressler, Neil M.
    [J]. JAMA OPHTHALMOLOGY, 2017, 135 (11) : 1170 - 1176