DEFLATION METHOD FOR CANDECOMP/PARAFAC TENSOR DECOMPOSITION

被引:0
作者
Anh-Huy Phan [1 ]
Tichavsky, Petr [2 ]
Cichocki, Andrzej [1 ]
机构
[1] RIKEN, Brain Sci Inst, Wako, Japan
[2] Acad Sci Czech Republ, Inst Informat Theory & Automat, CR-18208 Prague, Czech Republic
来源
2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2014年
关键词
tensor decomposition; CANDECOMP/PARAFAC; deflation; rank-1; reduction; HIGHER-ORDER TENSOR; APPROXIMATION; RANK-1;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
CANDECOMP/PARAFAC tensor decomposition (CPD) approximates multiway data by rank-1 tensors. Unlike matrix decomposition, the procedure which estimates the best rank-R tensor approximation through R sequential best rank-1 approximations does not work for tensors, because the deflation does not always reduce the tensor rank. In this paper we propose a novel deflation method for the problem in which rank R does not exceed the tensor dimensions. A rank-R CPD can be performed through (R-1) rank-1 reductions. At each deflation stage, the residue tensor is constrained to have a reduced multilinear rank.
引用
收藏
页数:5
相关论文
共 28 条
[1]   Practical aspects of PARAFAC modeling of fluorescence excitation-emission data [J].
Andersen, CM ;
Bro, R .
JOURNAL OF CHEMOMETRICS, 2003, 17 (04) :200-215
[2]   Tensor decompositions for feature extraction and classification of high dimensional datasets [J].
Anh Huy Phan ;
Ciehoeki, Andrzej .
IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2010, 1 (01) :37-68
[3]  
[Anonymous], 2005, P 22 INT C MACH LEAR, DOI DOI 10.1145/1102351.1102451
[4]   Multi-way space-time-wave-vector analysis for EEG source separation [J].
Becker, Hanna ;
Comon, Pierre ;
Albera, Laurent ;
Haardt, Martin ;
Merlet, Isabelle .
SIGNAL PROCESSING, 2012, 92 (04) :1021-1031
[5]  
Bro R., 1998, MODELS ALGORITHMS
[6]   ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION [J].
CARROLL, JD ;
CHANG, JJ .
PSYCHOMETRIKA, 1970, 35 (03) :283-&
[7]   A rank-one reduction formula and its applications to matrix factorizations [J].
Chu, MT ;
Funderlic, RE ;
Golub, GH .
SIAM REVIEW, 1995, 37 (04) :512-530
[8]  
Cichocki A., 2009, NONNEGATIVE MATRIX T
[9]   On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1324-1342
[10]   DECOMPOSITIONS OF A HIGHER-ORDER TENSOR IN BLOCK TERMS-PART III: ALTERNATING LEAST SQUARES ALGORITHMS [J].
De Lathauwer, Lieven ;
Nion, Dimitri .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) :1067-1083