The multiple-parameter discrete fractional Fourier transform and its application

被引:0
作者
Hsue, Wen-Liang [1 ]
Pei, Soo-Chang [1 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Taipei 10764, Taiwan
来源
2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13 | 2006年
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The discrete fractional Fourier transform (DFRFT) is a generalization of the discrete Fourier transform (DFT) with one additional order parameter. In this paper, we extend the DFRFT to have N order parameters, where N is the number of the input data points. The proposed multiple-parameter discrete fractional Fourier transform (MPDFRFT) is shown to have all of the desired properties for fractional transforms. In fact, the MPDFRFT reduces to the DFRFT when all of its order parameters are the same. To show an application example of the MPDFRFT, we exploit its multiple-parameter feature and propose the double random phase encoding in the MPDFRFT domain for encrypting digital data. The proposed encoding scheme in the MPDFRFT domain significantly enhances data security.
引用
收藏
页码:2867 / 2870
页数:4
相关论文
共 10 条
[1]   THE FRACTIONAL FOURIER-TRANSFORM AND TIME-FREQUENCY REPRESENTATIONS [J].
ALMEIDA, LB .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (11) :3084-3091
[2]  
[Anonymous], 2000, FRACTIONAL FOURIER T
[3]   The discrete fractional Fourier transform [J].
Candan, Ç ;
Kutay, MA ;
Ozaktas, HM .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (05) :1329-1337
[4]   EIGENVECTORS AND FUNCTIONS OF THE DISCRETE FOURIER-TRANSFORM [J].
DICKINSON, BW ;
STEIGLITZ, K .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1982, 30 (01) :25-31
[5]  
McClellan J. H., 1972, IEEE Transactions on Audio and Electroacoustics, VAU20, P66, DOI 10.1109/TAU.1972.1162342
[6]  
NAMIAS V, 1980, J I MATH APPL, V25, P241
[7]   Improved discrete fractional Fourier transform [J].
Pei, SC ;
Yeh, MH .
OPTICS LETTERS, 1997, 22 (14) :1047-1049
[8]   The discrete fractional cosine and sine transforms [J].
Pei, SC ;
Yeh, MH .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (06) :1198-1207
[9]   OPTICAL-IMAGE ENCRYPTION BASED ON INPUT PLANE AND FOURIER PLANE RANDOM ENCODING [J].
REFREGIER, P ;
JAVIDI, B .
OPTICS LETTERS, 1995, 20 (07) :767-769
[10]   Double random fractional Fourier-domain encoding for optical security [J].
Unnikrishnan, G ;
Singh, K .
OPTICAL ENGINEERING, 2000, 39 (11) :2853-2859