Protecting Silicon Film Anodes in Lithium-Ion Batteries Using an Atomically Thin Graphene Drape

被引:126
作者
Suresh, Shravan [1 ]
Wu, Zi Ping [4 ]
Bartolucci, Stephen F. [5 ]
Basu, Swastik [1 ]
Mukherjee, Rahul [6 ]
Gupta, Tushar [1 ]
Hundekar, Prateek [2 ]
Shi, Yunfeng [2 ]
Lu, Toh-Ming [3 ]
Koratkar, Nikhil [1 ,2 ]
机构
[1] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
[3] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[4] Jiangxi Univ Sci & Technol, Sch Mat Sci & Engn, Jiangxi Key Lab Power Battery & Mat, Ganzhou 341000, Peoples R China
[5] Benet Labs, US Army Armaments Res Dev & Engn Ctr, Watervliet, NY 12189 USA
[6] Enermat Technol Inc, Troy, NY USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
silicon film anodes; monolayer graphene; graphene encapsulation; stable cycle life; volumetric energy density; HIGH-CAPACITY; LITHIATION; STORAGE; DESIGN;
D O I
10.1021/acsnano.7b01780
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Silicon (Si) shows promise as an anode material in lithium-ion batteries due to its very high specific capacity. However, Si is highly brittle, and in an effort to prevent Si from fracturing, the research community has migrated from the use of Si films to Si nanoparticle based electrodes. However, such a strategy significantly reduces volumetric energy density due to the porosity of Si nanoparticle electrodes. Here we show that contrary to conventional wisdom, Si films can be stabilized by two strategies: (a) anchoring the Si films to a carbon nanotube macrofilm (CNM) current collector and (b) draping the films with a graphene monolayer. After electrochemical cycling, the graphene-coated Si films on CNM resembled a tough mud-cracked surface in which the graphene capping layer suppresses delamination and stabilizes the solid electrolyte interface. The graphene-draped Si films on CNM exhibit long cycle life (>1000 charge/discharge steps) with an average specific capacity of similar to 806 mAh g(-1). The volumetric capacity averaged over 1000 cycles of charge/discharge is similar to 2821 mAh cm(-3), which is 2 to 5 times higher than what is reported in the literature for Si nanoparticle based electrodes. The graphene-draped Si anode could also be successfully cycled against commercial cathodes in a full-cell configuration.
引用
收藏
页码:5051 / 5061
页数:11
相关论文
共 35 条
[11]   A Foldable Lithium-Sulfur Battery [J].
Li, Lu ;
Wu, Zi Ping ;
Sun, Hao ;
Chen, Deming ;
Gao, Jian ;
Suresh, Shravan ;
Chow, Philippe ;
Singh, Chandra Veer ;
Koratkar, Nikhil .
ACS NANO, 2015, 9 (11) :11342-11350
[12]   Silicon-based materials as high capacity anodes for next generation lithium ion batteries [J].
Liang, Bo ;
Liu, Yanping ;
Xu, Yunhua .
JOURNAL OF POWER SOURCES, 2014, 267 :469-490
[13]  
Liu N, 2014, NAT NANOTECHNOL, V9, P187, DOI [10.1038/nnano.2014.6, 10.1038/NNANO.2014.6]
[14]   A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes [J].
Liu, Nian ;
Wu, Hui ;
McDowell, Matthew T. ;
Yao, Yan ;
Wang, Chongmin ;
Cui, Yi .
NANO LETTERS, 2012, 12 (06) :3315-3321
[15]   Core-shell CNT-Ni-Si nanowires as a high performance anode material for lithium ion batteries [J].
Lu, Congxiang ;
Fan, Yu ;
Li, Hong ;
Yang, Yi ;
Tay, Beng Kang ;
Teo, Edwin ;
Zhang, Qing .
CARBON, 2013, 63 :54-60
[16]   Si nanoparticles/graphene composite membrane for high performance silicon anode in lithium ion batteries [J].
Luo, Zhongping ;
Xiao, Qizhen ;
Lei, Gangtie ;
Li, Zhaohui ;
Tang, Caijun .
CARBON, 2016, 98 :373-380
[17]   Interfacial properties of the a-Si/Cu:active-inactive thin-film anode system for lithium-ion batteries [J].
Maranchi, JP ;
Hepp, AF ;
Evans, AG ;
Nuhfer, NT ;
Kumta, PN .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (06) :A1246-A1253
[18]   High capacity, reversible silicon thin-film anodes for lithium-ion batteries [J].
Maranchi, JP ;
Hepp, AF ;
Kumta, PN .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (09) :A198-A201
[19]   Defect-induced plating of lithium metal within porous graphene networks [J].
Mukherjee, Rahul ;
Thomas, Abhay V. ;
Datta, Dibakar ;
Singh, Eklavya ;
Li, Junwen ;
Eksik, Osman ;
Shenoy, Vivek B. ;
Koratkar, Nikhil .
NATURE COMMUNICATIONS, 2014, 5
[20]   Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF [J].
Ostadhossein, Alireza ;
Cubuk, Ekin D. ;
Tritsaris, Georgios A. ;
Kaxiras, Efthimios ;
Zhang, Sulin ;
van Duin, Adri C. T. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (05) :3832-3840