MAXIMIZING A MONOTONE SUBMODULAR FUNCTION WITH A BOUNDED CURVATURE UNDER A KNAPSACK CONSTRAINT

被引:17
作者
Yoshida, Yuichi [1 ]
机构
[1] Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
关键词
submodular function; curvature; knapsack constraints; FUNCTION SUBJECT;
D O I
10.1137/16M1107644
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of maximizing a monotone submodular function under a knapsack constraint. We show that, for any fixed epsilon > 0, there exists a polynomial-time algorithm with an approximation ratio 1- c/e - epsilon, where c is an element of [0, 1] is the (total) curvature of the input function. This approximation ratio is tight up to c for any c is an element of [0, 1]. To the best of our knowledge, this is the first result for a knapsack constraint that incorporates the curvature to obtain an approximation ratio better than 1 - 1/e, which is tight for general submodular functions. As an application of our result, we present a polynomial-time algorithm for the budget allocation problem with an improved approximation ratio.
引用
收藏
页码:1452 / 1471
页数:20
相关论文
共 18 条
[11]  
LEE J., 2006, MAXIMUM ENTROPY SAMP
[12]  
Lin H, 2011, P 49 ANN M ASS COMPU, P510
[13]  
Lin Hui, 2010, HUMAN LANGUAGE TECHN, P912
[14]  
NGUYEN H. L., 2017, PREPRINT
[15]  
Sharma D, 2015, PR MACH LEARN RES, V37, P1330
[16]  
Soma T, 2014, PR MACH LEARN RES, V32
[17]   A note on maximizing a submodular set function subject to a knapsack constraint [J].
Sviridenko, M .
OPERATIONS RESEARCH LETTERS, 2004, 32 (01) :41-43
[18]  
Vondrak Jan, 2010, RIMS Kokyuroku Bessatsu B, V23, P253