Spectral triples and differential calculi related to the Kronecker foliation

被引:2
作者
Matthes, R
Richter, O
Rudolph, G
机构
[1] Univ Leipzig, Inst Theoret Phys, D-04109 Leipzig, Germany
[2] Tech Univ Clausthal, Fachbereich Phys, D-38678 Clausthal Zellerfeld, Germany
关键词
spectral triples;
D O I
10.1016/S0393-0440(02)00136-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Following the ideas of Connes and Moscovici, we describe two spectral triples related to the Kronecker foliation, whose generalized Dirac operators are related to first and second order signature operators. We also consider the corresponding differential calculi Omega(D), which are drastically different in the two cases. For the second order signature operator we calculate the Chem character of the spectral triple and the Dixmier trace of certain powers of its Dirac operator. As a side-remark, we give a description of a known calculus on the two-dimensional noncommutative torus in terms of generators and relations. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:48 / 73
页数:26
相关论文
共 19 条
[1]  
Bott R., 1972, LECT NOTES MATH, V279, P1
[2]   The spectral action principle [J].
Chamseddine, AH ;
Connes, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (03) :731-750
[3]   THE LOCAL INDEX FORMULA IN NONCOMMUTATIVE GEOMETRY [J].
CONNES, A ;
MOSCOVICI, H .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (02) :174-243
[4]  
Connes A., 1991, Nuclear Physics B, Proceedings Supplements, V18B, P29, DOI 10.1016/0920-5632(91)90120-4
[5]  
Connes A., 1987, CONT MATH, V62, P237
[6]  
Connes A, 1985, Inst. Hautes Etudes Sci. Publ. Math., V62, P41, DOI 10.1007/BF02698807
[7]   NONCOMMUTATIVE GEOMETRY AND GRADED ALGEBRAS IN ELECTROWEAK INTERACTIONS [J].
COQUEREAUX, R ;
ESPOSITOFARESE, G ;
SCHECK, F .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (26) :6555-6593
[8]   Supersymmetric quantum theory and differential geometry [J].
Frohlich, J ;
Grandjean, O ;
Recknagel, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 193 (03) :527-594
[9]   Supersymmetric quantum theory and non-commutative geometry [J].
Fröhlich, J ;
Grandjean, O ;
Recknagel, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (01) :119-184
[10]   GRAVITY, NONCOMMUTATIVE GEOMETRY AND THE WODZICKI RESIDUE [J].
KALAU, W ;
WALZE, M .
JOURNAL OF GEOMETRY AND PHYSICS, 1995, 16 (04) :327-344