Certain subclasses of multivalent analytic functions defined by multiplier transforms

被引:4
作者
Wang, Zhi-Gang [1 ]
Xu, Neng [2 ]
Acu, Mugur [3 ]
机构
[1] Hengyang Normal Univ, Dept Math & Comp Sci, Hengyang 421008, Hunan, Peoples R China
[2] Changshu Inst Sci & Technol, Dept Math, Changshu 215500, Jiangsu, Peoples R China
[3] Lucian Blaga Univ Sibiu, Dept Math, Sibiu 550012, Romania
关键词
Analytic functions; Multivalent functions; Differential subordination; Superordination; Hadamard product (or convolution); Multiplier transforms; CONVOLUTION PROPERTIES;
D O I
10.1016/j.amc.2010.01.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By making use of the principle of subordination between analytic functions and a family of multiplier transforms, we introduce and investigate some new subclasses of multivalent analytic functions. Such results as inclusion relationships, subordination and superordination properties, integral-preserving properties, argument estimates and convolution properties are proved. Crown Copyright (C) 2010 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:192 / 204
页数:13
相关论文
共 16 条
  • [1] The radius of starlikeness of the certain classes of p-valent functions defined by multiplier transformations
    Acu, Mugur
    Polatoglu, Yasar
    Yavuz, Emel
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008, 2008 (1)
  • [2] Al-Oboudi FM., 2004, Int. J. Math. Sci, V27, P1429, DOI DOI 10.1155/S0161171204108090
  • [3] CATAS A, 2007, INT S GEOM FUNCT THE
  • [4] CATAS A, 2008, ABSTR APPL ANAL, P1
  • [5] NEIGHBORHOODS OF A CERTAIN CLASS OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS
    Catas, Adriana
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2009, 3 (01): : 111 - 121
  • [6] 조낙은, 2003, [Bulletin of the KMS, 대한수학회보], V40, P399
  • [7] Argument estimates of certain analytic functions defined by a class of multiplier transformations
    Cho, NE
    Srivastava, HM
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2003, 37 (1-2) : 39 - 49
  • [8] Kumar SS, 2006, KYUNGPOOK MATH J, V46, P97
  • [9] MILLER SS, 1985, MICH MATH J, V32, P185
  • [10] Miller SS, 2003, Complex Var, V48, P815, DOI [DOI 10.1080/02781070310001599322, 10.1080/02781070310001599322]