COMPLETE LINEAR WEINGARTEN SPACELIKE SUBMANIFOLDS IMMERSED IN THE ANTI-DE SITTER SPACE

被引:0
作者
de Lima, Henrique Fernandes [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
关键词
anti-de Sitter space; complete spacelike submanifolds; parallel normalized mean curvature vector; linear Weingarten submanifolds; totally umbilical sub-manifolds; HYPERSURFACES; GEOMETRY; VECTOR;
D O I
10.4064/cm7941-5-2020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with n-dimensional complete linear Weingarten spacelike submanifolds having nonnegative sectional curvature and immersed in the anti-de Sitter space H-p(n+p) of index p with parallel normalized mean curvature vector field. We recall that a spacelike submanifold is said to be linear Weingarten when its mean and normalized scalar curvature functions are linearly related. We prove that under suitable constraints on the mean curvature function, such a spacelike submanifold must be either totally umbilical or isometric to a product M-1 x . . . x M-k, where the factors M-i are totally umbilical submanifolds of H(p)(n+p )which are mutually perpendicular along their intersections. Furthermore, when this spacelike submanifold is assumed to be compact (without boundary) with positive sectional curvature, we also obtain a rigidity result.
引用
收藏
页码:117 / 130
页数:14
相关论文
共 28 条
  • [1] On the geometry of complete spacelike hypersurfaces in the anti-de Sitter space
    Aquino, Cicero P.
    de Lima, Henrique F.
    Velasquez, Marco Antonio L.
    [J]. GEOMETRIAE DEDICATA, 2015, 174 (01) : 13 - 23
  • [2] On the umbilicity of complete constant mean curvature spacelike hypersurfaces
    Aquino, Cicero P.
    de Lima, Henrique F.
    [J]. MATHEMATISCHE ANNALEN, 2014, 360 (3-4) : 555 - 569
  • [3] Calabi E., 1977, MATH P CAMBRIDGE PHI, V82, P489
  • [4] New characterizations of totally geodesic hypersurfaces in anti-de Sitter space H1n+1
    Camargo, F.
    de Lima, H.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (10) : 1326 - 1332
  • [5] Generalized maximum principles and the rigidity of complete spacelike hypersurfaces
    Camargo, Fernanda
    Caminha, Antonio
    De Lima, Henrique
    Parente, Ulisses
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2012, 153 : 541 - 556
  • [6] The geometry of closed conformal vector fields on Riemannian spaces
    Caminha, A.
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (02): : 277 - 300
  • [7] SURFACES WITH PARALLEL NORMALIZED MEAN-CURVATURE VECTOR
    CHEN, BY
    [J]. MONATSHEFTE FUR MATHEMATIK, 1980, 90 (03): : 185 - 194
  • [8] Cheng QM., 1993, C MATH, V66, P201
  • [9] HYPERSURFACES WITH CONSTANT SCALAR CURVATURE
    CHENG, SY
    YAU, ST
    [J]. MATHEMATISCHE ANNALEN, 1977, 225 (03) : 195 - 204
  • [10] MAXIMAL SPACE-LIKE HYPERSURFACES IN LORENTZ-MINKOWSKI SPACES
    CHENG, SY
    YAU, ST
    [J]. ANNALS OF MATHEMATICS, 1976, 104 (03) : 407 - 419