Impact of nanodiffusion on the stacking fault energy in high-strength steels

被引:72
作者
Hickel, T. [1 ]
Sandloebes, S. [1 ]
Marceau, R. K. W. [1 ]
Dick, A. [1 ]
Bleskov, I. [1 ]
Neugebauer, J. [1 ]
Raabe, D. [1 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany
关键词
Stacking fault energy; Iron; Carbon; In situ TEM; DFT; MOLECULAR-DYNAMICS; CARBON; TEMPERATURE; DEPENDENCE; NITROGEN; METALS; ATOMS; IRON;
D O I
10.1016/j.actamat.2014.04.062
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A key requirement of modern steels the combination of high strength and high deformability - can best be achieved by enabling a local adaptation of the microstructure during deformation. A local hardening is most efficiently obtained by a modification of the stacking sequence of atomic layers, resulting in the formation of twins or martensite. Combining ab initio calculations with in situ transmission electron microscopy, we show that the ability of a material to incorporate such stacking faults depends on its overall chemical composition and, importantly, the local composition near the defect, which is controlled by nanodiffusion. Specifically, the role of carbon for the stacking fault energy in high-Mn steels is investigated. Consequences for the long-term mechanical properties and the characterisation of these materials are discussed. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:147 / 155
页数:9
相关论文
共 39 条
  • [1] First-principles investigation of the effect of carbon on the stacking fault energy of Fe-C alloys
    Abbasi, Afshin
    Dick, Alexey
    Hickel, Tilmann
    Neugebauer, Joerg
    [J]. ACTA MATERIALIA, 2011, 59 (08) : 3041 - 3048
  • [2] A REVISED EXPRESSION FOR THE DIFFUSIVITY OF CARBON IN BINARY FE-C AUSTENITE
    AGREN, J
    [J]. SCRIPTA METALLURGICA, 1986, 20 (11): : 1507 - 1510
  • [3] Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys
    Allain, S
    Chateau, JP
    Bouaziz, O
    Migot, S
    Guelton, N
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 387 : 158 - 162
  • [4] EFFECT OF CARBON ON STACKING-FAULT ENERGY OF AUSTENITIC STAINLESS-STEELS
    BROFMAN, PJ
    ANSELL, GS
    [J]. METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1978, 9 (06): : 879 - 880
  • [5] Chakrabarty A, UNPUB
  • [6] Estimative of the Stacking Fault Energy for a FeNi(50/50) Alloy and a 316L Stainless Steel
    de Campos, M. F.
    Loureiro, S. A.
    Rodrigues, D.
    da Silva, M. C. A.
    de Lima, N. B.
    [J]. ADVANCED POWDER TECHNOLOGY VI, 2008, 591-593 : 3 - +
  • [7] STACKING-FAULT ENERGIES IN SEMICONDUCTORS FROM 1ST-PRINCIPLES CALCULATIONS
    DENTENEER, PJH
    VANHAERINGEN, W
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1987, 20 (32): : L883 - L887
  • [8] ON SUZUKI EFFECT AND SPINODAL DECOMPOSITION
    ERICSSON, T
    [J]. ACTA METALLURGICA, 1966, 14 (09): : 1073 - &
  • [9] FAWLEY R, 1968, T METALL SOC AIME, V242, P771
  • [10] Solute/defect-mediated pathway for rapid nanoprecipitation in solid solutions:: γ surface analysis in fcc Al-Ag -: art. no. 024101
    Finkenstadt, D
    Johnson, DD
    [J]. PHYSICAL REVIEW B, 2006, 73 (02)