Local energy decay for linear wave equations with non-compactly supported initial data

被引:11
作者
Ikehata, R [1 ]
机构
[1] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
关键词
wave equation; exterior mixed problem; non-compactly supported initial data; local energy decay;
D O I
10.1002/mma.529
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A local energy decay problem is studied to a typical linear wave equation in an exterior domain. For this purpose, we do not assume any compactness of the support on the initial data. This generalizes a previous famous result due to Morawetz (Comm. Pure Appl. Math. 1961; 14:561-568). In order to prove local energy decay we mainly apply two types of new ideas due to Ikehata-Matsuyama (Sci. Math. Japon. 2002; 55:33-42) and Todorova-Yordanov (J. Differential Equations 2001; 174:464). Copyright (C) 2004 John Wiley Sons, Ltd.
引用
收藏
页码:1881 / 1892
页数:12
相关论文
共 10 条
[1]  
Dan W., 1995, FUNKC EKVACIOJ-SER I, V38, P545
[2]  
Ikehata R., 2002, Sci. Math. Jpn, V55, P33
[3]  
Ikehata R., 2002, FUNKC EKVACIOJ-SER I, V44, P259
[4]  
Lions J. L., 1965, B SOC MATH FRANCE, V93, P43
[6]   EXPONENTIAL DECAY OF SOLUTIONS OF WAVE EQUATION [J].
MORAWETZ, CS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1966, 19 (04) :439-&
[7]  
Murave L.A., 1989, SOVIET MATH DOKL, V38, P527
[8]   ON A GLOBAL EXISTENCE THEOREM OF SMALL AMPLITUDE SOLUTIONS FOR NONLINEAR-WAVE EQUATIONS IN AN EXTERIOR DOMAIN [J].
SHIBATA, Y ;
TSUTSUMI, Y .
MATHEMATISCHE ZEITSCHRIFT, 1986, 191 (02) :165-199
[9]   Critical exponent for a nonlinear wave equation with damping [J].
Todorova, G ;
Yordanov, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 174 (02) :464-489
[10]  
[No title captured]