Cyclic scenarios for steady-state operation of tokamak reactors

被引:7
|
作者
Garcia, J. [1 ]
Giruzzi, G. [1 ]
Maget, P. [1 ]
Artaud, J. F. [1 ]
Basiuk, V. [1 ]
Decker, J. [1 ]
Huysmans, G. [1 ]
Imbeaux, F. [1 ]
Peysson, Y. [1 ]
Schneider, M. [1 ]
机构
[1] CEA, IRFM, F-13108 St Paul Les Durance, France
关键词
NORMAL-MODE ANALYSIS; CURRENT DRIVE; BURN CYCLES; CYCLOTRON; SIMULATIONS; TRANSPORT; STABILITY; JET;
D O I
10.1088/0029-5515/50/2/025025
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A new concept of steady-state scenario for tokamak reactors is proposed. It is based on cyclic operations, alternating phases of positive and negative loop voltage with no magnetic flux consumption on average. Localized non-inductive current drive by electron cyclotron waves is used to trigger and sustain an internal transport barrier (ITB), whereas neutral beam current drive is used to periodically recharge the tokamak transformer. The fact of operating in cycles relaxes the hard constraint of simultaneous fusion performance maximization and full non-inductive operation, within the MHD stability limits. Integrated modelling simulations are performed to apply this concept for the ITER steady-state regime. A linear MHD analysis of the instabilities that could appear in this type of scenario is performed, showing that MHD stability would be strongly improved with respect to a steady regime with a strong ITB.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] CONTINUOUS MONITORING AND DATA-ACQUISITION SYSTEM FOR STEADY-STATE TOKAMAK OPERATION
    JOTAKI, E
    ITOH, S
    FUSION TECHNOLOGY, 1995, 27 (02): : 171 - 175
  • [22] Toward steady-state operation of a large Tokamak: The Tore-Supra experience
    Martin, G
    FUSION ENGINEERING AND DESIGN, 2000, 51-52 : 1007 - 1013
  • [23] Steady-state operability characteristics of reactors
    Subramanian, S
    Georgakis, C
    COMPUTERS & CHEMICAL ENGINEERING, 2000, 24 (2-7) : 1563 - 1568
  • [24] Self-consistent modeling of CFETR baseline scenarios for steady-state operation
    Chen, Jiale
    Jian, Xiang
    Chan, Vincent S.
    Li, Zeyu
    Deng, Zhao
    Li, Guoqiang
    Guo, Wenfeng
    Shi, Nan
    Chen, Xi
    PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (07)
  • [25] Prospects for steady-state scenarios on JET
    Litaudon, X.
    Bizarro, J. P. S.
    Challis, C. D.
    Crisanti, F.
    De Vries, P. C.
    Lomas, P.
    Rimini, F. G.
    Tala, T. J. J.
    Akers, R.
    Andrew, Y.
    Arnoux, G.
    Artaud, J. F.
    Baranov, Yu F.
    Beurskens, M.
    Brix, M.
    Cesario, R.
    De La Luna, E.
    Fundamenski, W.
    Giroud, C.
    Hawkes, N. C.
    Huber, A.
    Joffrin, E.
    Pitts, R. A.
    Rachlew, E.
    Reyes-Cortes, S. D. A.
    Sharapov, S. E.
    Zastrow, K. D.
    Zimmermann, O.
    NUCLEAR FUSION, 2007, 47 (09) : 1285 - 1292
  • [26] Steady-state tokamak research: Core physics
    Kikuchi, M.
    Azumi, M.
    REVIEWS OF MODERN PHYSICS, 2012, 84 (04) : 1807 - 1854
  • [27] CONTROLLABILITY OF A STEADY-STATE TOKAMAK FUSION REACTOR
    SABRI, ZA
    HUSSEINY, AA
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1974, 19 (OCT27): : 12 - 13
  • [28] MAGNETIC-SURFACES IN A STEADY-STATE TOKAMAK
    KINNEY, R
    TAJIMA, T
    IRIE, H
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (01): : 118 - 124
  • [29] CONCEPTUAL DESIGN OF RST STEADY-STATE TOKAMAK
    PRATER, R
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (07): : 856 - 856
  • [30] Status of fusion technology development in JAERI stressing steady-state operation for future reactors
    Matsuda, S
    FUSION ENGINEERING AND DESIGN, 2000, 49-50 : 27 - 32