Sensitivity analysis in general metric spaces

被引:8
作者
Gamboa, Fabrice [1 ,2 ,3 ]
Klein, Thierry [1 ,4 ,5 ]
Lagnoux, Agnes [4 ,6 ,7 ]
Moreno, Leonardo [8 ]
机构
[1] Inst Math Toulouse, F-31062 Toulouse, France
[2] ANITI, F-31062 Toulouse, France
[3] Univ Toulouse, UMR5219, CNRS, UT3, F-31062 Toulouse, France
[4] Univ Toulouse, UMR5219, F-31058 Toulouse, France
[5] Univ Toulouse, ENAC Ecole Natl Aviat Civile, Toulouse, France
[6] Inst Math Toulouse, F-31058 Toulouse, France
[7] CNRS, UT2J, F-31058 Toulouse, France
[8] Univ Republica, FCEA, Dept Metodos Cuantitat, Montevideo, Uruguay
关键词
Sensitivity analysis; Cramer-von-Mises distance; Pick-Freeze method; U-statistics; General metric spaces; MODEL; VARIANCE; PLUME;
D O I
10.1016/j.ress.2021.107611
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Sensitivity indices are commonly used to quantity the relative influence of any specific group of input variables on the output of a computer code. In this paper, we introduce new sensitivity indices adapted to outputs valued in general metric spaces. This new class of indices encompasses the classical ones; in particular, the so-called Sobol indices and the Cramer-von-Mises indices. Furthermore, we provide asymptotically Gaussian estimators of these indices based on U-statistics. Surprisingly, we prove the asymptotic normality straightforwardly. Finally, we illustrate this new procedure on a toy model and on two real-data examples.
引用
收藏
页数:8
相关论文
共 37 条
[1]   A new uncertainty importance measure [J].
Borgonovo, E. .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2007, 92 (06) :771-784
[2]   Probabilistic sensitivity measures as information value [J].
Borgonovo, Emanuele ;
Hazen, Gordon B. ;
Jose, Victor Richmond R. ;
Plischke, Elmar .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 289 (02) :595-610
[3]   A Common Rationale for Global Sensitivity Measures and Their Estimation [J].
Borgonovo, Emanuele ;
Hazen, Gordon B. ;
Plischke, Elmar .
RISK ANALYSIS, 2016, 36 (10) :1871-1895
[4]   Moment Independent Importance Measures: New Results and Analytical Test Cases [J].
Borgonovo, Emanuele ;
Castaings, William ;
Tarantola, Stefano .
RISK ANALYSIS, 2011, 31 (03) :404-428
[5]   SENSITIVITY OF GAUSSIAN PLUME MODEL TO DISPERSION SPECIFICATIONS [J].
CARRASCAL, MD ;
PUIGCERVER, M ;
PUIG, P .
THEORETICAL AND APPLIED CLIMATOLOGY, 1993, 48 (2-3) :147-157
[6]   Global sensitivity analysis with dependence measures [J].
Da Veiga, Sebastien .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (07) :1283-1305
[7]  
de Rocquigny E., 2008, Uncertainty in Industrial Practice: a Guide to Quantitative Uncertainty Management
[8]   New sensitivity analysis subordinated to a contrast [J].
Fort, Jean-Claude ;
Klein, Thierry ;
Rachdi, Nabil .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (15) :4349-4364
[9]   SENSITIVITY INDICES FOR OUTPUT ON A RIEMANNIAN MANIFOLD [J].
Fraiman, R. ;
Gamboa, F. ;
Moreno, L. .
INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2020, 10 (04) :297-314
[10]   Statistical inference for Sobol pick-freeze Monte Carlo method [J].
Gamboa, F. ;
Janon, A. ;
Klein, T. ;
Lagnoux, A. ;
Prieur, C. .
STATISTICS, 2016, 50 (04) :881-902