Multiple metabolic roles for the nonphotosynthetic plastid of the green alga Prototheca wickerhamii

被引:50
作者
Borza, T [1 ]
Popescu, CE [1 ]
Lee, RW [1 ]
机构
[1] Dalhousie Univ, Dept Biol, Halifax, NS B3H 4J1, Canada
关键词
D O I
10.1128/EC.4.2.253-261.2005
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The presence of plastids in diverse eukaryotic lineages that have lost the capacity for photosynthesis is well documented. The metabolic functions of such organelles, however, are poorly understood except in the case of the apicoplast in the Apicomplexa, a group of intracellular parasites including Plasmodium falciparum, and the plastid of the green alga Helicosporidium sp., a parasite for which the only host-free stage identified in nature so far is represented by cysts. As a first step in the reconstruction of plastid functions in a nonphotosynthetic, predominantly free-living organism, we searched for expressed sequence tags (ESTs) that correspond to nucleus-encoded plastid-targeted polypeptides in the green alga Prototheca wickerhamii. From 3,856 ESTs, we found that 71 unique sequences (235 ESTs) correspond to different nucleus-encoded putatively plastid-targeted polypeptides. The identified proteins predict that carbohydrate, amino acid, lipid, tetrapyrrole, and isoprenoid metabolism as well as de novo purine biosynthesis and oxidoreductive processes take place in the plastid of P. wickerhamii. Mg-protoporphyrin accumulation and, therefore, plastid-to-nucleus signaling might also occur in this nonphotosynthetic organism, as we identified a transcript which encodes subunit I of Mg-chelatase, the enzyme which catalyzes the first committed step in chlorophyll synthesis. Our data indicate a far more complex metabolism in P. wickerhamii's plastid compared with the metabolic pathways predicted to be located in the apicoplast of P. falciparum and the plastid of Helicosporidium sp.
引用
收藏
页码:253 / 261
页数:9
相关论文
共 63 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   Recycled plastids: a 'green movement' in eukaryotic evolution [J].
Archibald, JM ;
Keeling, PJ .
TRENDS IN GENETICS, 2002, 18 (11) :577-584
[3]   Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana [J].
Awai, K ;
Maréchal, E ;
Block, MA ;
Brun, D ;
Masuda, T ;
Shimada, H ;
Takamiya, K ;
Ohta, H ;
Joyard, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (19) :10960-10965
[4]   Extensive feature detection of N-terminal protein sorting signals [J].
Bannai, H ;
Tamada, Y ;
Maruyama, O ;
Nakai, K ;
Miyano, S .
BIOINFORMATICS, 2002, 18 (02) :298-305
[5]   In vivo and in vitro development of the protist Helicosporidium sp. [J].
Boucias, DG ;
Becnel, JJ ;
White, SE ;
Bott, M .
JOURNAL OF EUKARYOTIC MICROBIOLOGY, 2001, 48 (04) :460-470
[6]   The paradox of plastid transit peptides: conservation of function despite divergence in primary structure [J].
Bruce, BD .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2001, 1541 (1-2) :2-21
[7]   Apicoplast genome of the coccidian Eimeria tenella [J].
Cai, XM ;
Fuller, AL ;
McDougald, LR ;
Zhu, G .
GENE, 2003, 321 :39-46
[8]   Experiences with the Shikimate-pathway enzymes as targets for rational drug design [J].
Coggins, JR ;
Abell, C ;
Evan, LB ;
Frederickson, M ;
Robinson, DA ;
Roszak, AW ;
Lapthorn, AP .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2003, 31 :548-552
[9]   Green or red: what stops the traffic in the tetrapyrrole pathway? [J].
Cornah, JE ;
Terry, MJ ;
Smith, AG .
TRENDS IN PLANT SCIENCE, 2003, 8 (05) :224-230
[10]   MULTIPLE SEQUENCE ALIGNMENT WITH HIERARCHICAL-CLUSTERING [J].
CORPET, F .
NUCLEIC ACIDS RESEARCH, 1988, 16 (22) :10881-10890