New linear codes derived from skew generalized quasi-cyclic codes of any length

被引:0
作者
Seneviratne, Padmapani [1 ]
Abualrub, Taher [2 ]
机构
[1] Texas A&M Univ Commerce, 2200 Campbell St, Commerce, TX 75428 USA
[2] Amer Univ Sharjah, Dept Math & Stat, Sharjah, U Arab Emirates
关键词
Cyclic codes; Quasi-cyclic codes; Skew cyclic codes; Optimal codes;
D O I
10.1016/j.disc.2022.113018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article studies skew generalized quasi-cyclic codes (SGQC-codes) over finite fields for any length n. We derive generator polynomials and cardinality of SGQC codes. Moreover, we show that the dual of any length SGQC-code is also an SGQC-code. Our search results lead to the construction of fifteen new 2-generator SGQC codes over the finite field F4 with minimum distances exceeding the minimum distances of the previously best known F4-linear codes with comparable parameters.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 9 条
  • [1] Abualrub T, 2018, TWMS J PURE APPL MAT, V9, P123
  • [2] On the Construction of Skew Quasi-Cyclic Codes
    Abualrub, Taher
    Ghrayeb, Ali
    Aydin, Nuh
    Siap, Irfan
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (05) : 2081 - 2090
  • [3] A generalization of quasi-twisted codes: Multi-twisted codes
    Aydin, Nuh
    Halilovic, Ajdin
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2017, 45 : 96 - 106
  • [4] The Magma algebra system .1. The user language
    Bosma, W
    Cannon, J
    Playoust, C
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 235 - 265
  • [5] Skew-cyclic codes
    Boucher, D.
    Geiselmann, W.
    Ulmer, F.
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2007, 18 (04) : 379 - 389
  • [6] A Chinese remainder theorem approach to skew generalized quasi-cyclic codes over finite fields
    Gao, Jian
    Shen, Linzhi
    Fu, Fang-Wei
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2016, 8 (01): : 51 - 66
  • [7] Grassl M., Table of bounds on linear codes
  • [8] Siap I., 2011, INT J INF CODING, V2, P10, DOI [DOI 10.1504/IJICOT.2011.044674, 10.1504/IJICOT.2011.044674]
  • [9] Siap I, 2005, APPL MATH E-NOTES, V5, P24