Comprehensive Analysis of NAC Domain Transcription Factor Gene Family in Populus trichocarpa

被引:365
作者
Hu, Ruibo [1 ]
Qi, Guang [1 ]
Kong, Yingzhen [1 ]
Kong, Dejing [1 ]
Gao, Qian [1 ]
Zhou, Gongke [1 ]
机构
[1] Chinese Acad Sci, Qingdao Inst BioEnergy & Bioproc Technol, Qingdao 266101, Peoples R China
来源
BMC PLANT BIOLOGY | 2010年 / 10卷
基金
中国国家自然科学基金;
关键词
GENOME-WIDE ANALYSIS; SECONDARY WALL SYNTHESIS; STRESS-RESPONSIVE GENES; NO-APICAL-MERISTEM; MOLECULAR CHARACTERIZATION; FUNCTIONAL-ANALYSIS; ARABIDOPSIS ROOTS; CAMBIAL MERISTEM; CELL-DIVISION; WOODY TISSUES;
D O I
10.1186/1471-2229-10-145
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: NAC (NAM, ATAF1/2 and CUC2) domain proteins are plant-specific transcriptional factors known to play diverse roles in various plant developmental processes. NAC transcription factors comprise of a large gene family represented by more than 100 members in Arabidopsis, rice and soybean etc. Recently, a preliminary phylogenetic analysis was reported for NAC gene family from 11 plant species. However, no comprehensive study incorporating phylogeny, chromosomal location, gene structure, conserved motifs, and expression profiling analysis has been presented thus far for the model tree species Populus. Results: In the present study, a comprehensive analysis of NAC gene family in Populus was performed. A total of 163 full-length NAC genes were identified in Populus, and they were phylogeneticly clustered into 18 distinct subfamilies. The gene structure and motif compositions were considerably conserved among the subfamilies. The distributions of 120 Populus NAC genes were non-random across the 19 linkage groups (LGs), and 87 genes (73%) were preferentially retained duplicates that located in both duplicated regions. The majority of NACs showed specific temporal and spatial expression patterns based on EST frequency and microarray data analyses. However, the expression patterns of a majority of duplicate genes were partially redundant, suggesting the occurrence of subfunctionalization during subsequent evolutionary process. Furthermore, quantitative real-time RT-PCR (RT-qPCR) was performed to confirm the tissue-specific expression patterns of 25 NAC genes. Conclusion: Based on the genomic organizations, we can conclude that segmental duplications contribute significantly to the expansion of Populus NAC gene family. The comprehensive expression profiles analysis provides first insights into the functional divergence among members in NAC gene family. In addition, the high divergence rate of expression patterns after segmental duplications indicates that NAC genes in Populus are likewise to have been retained by substantial subfunctionalization. Taken together, our results presented here would be helpful in laying the foundation for functional characterization of NAC gene family and further gaining an understanding of the structure-function relationship between these family members.
引用
收藏
页数:23
相关论文
共 93 条
  • [1] Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant
    Aida, M
    Ishida, T
    Fukaki, H
    Fujisawa, H
    Tasaka, M
    [J]. PLANT CELL, 1997, 9 (06) : 841 - 857
  • [2] MEME: discovering and analyzing DNA and protein sequence motifs
    Bailey, Timothy L.
    Williams, Nadya
    Misleh, Chris
    Li, Wilfred W.
    [J]. NUCLEIC ACIDS RESEARCH, 2006, 34 : W369 - W373
  • [3] The cinnamyl alcohol dehydrogenase gene family in Populus: phylogeny, organization, and expression
    Barakat, Abdelali
    Bagniewska-Zadworna, Agnieszka
    Choi, Alex
    Plakkat, Urmila
    DiLoreto, Denis S.
    Yellanki, Priyadarshini
    Carlson, John E.
    [J]. BMC PLANT BIOLOGY, 2009, 9
  • [4] Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution
    Blanc, G
    Wolfe, KH
    [J]. PLANT CELL, 2004, 16 (07) : 1679 - 1691
  • [5] Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes
    Blanc, G
    Wolfe, KH
    [J]. PLANT CELL, 2004, 16 (07) : 1667 - 1678
  • [6] Poplar genome sequence: functional genomics in an ecologically dominant plant species
    Brunner, AM
    Busov, VB
    Strauss, SH
    [J]. TRENDS IN PLANT SCIENCE, 2004, 9 (01) : 49 - 56
  • [7] The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana
    Cannon S.B.
    Mitra A.
    Baumgarten A.
    Young N.D.
    May G.
    [J]. BMC Plant Biology, 4 (1)
  • [8] Chang S. J., 1993, Plant Molecular Biology Reporter, V11, P113, DOI 10.1007/BF02670468
  • [9] Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding
    Collinge, M
    Boller, T
    [J]. PLANT MOLECULAR BIOLOGY, 2001, 46 (05) : 521 - 529
  • [10] The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis
    Delessert, C
    Kazan, K
    Wilson, IW
    Van Der Straeten, D
    Manners, J
    Dennis, ES
    Dolferus, R
    [J]. PLANT JOURNAL, 2005, 43 (05) : 745 - 757