Entangled webs: Tight bound for symmetric sharing of entanglement

被引:128
作者
Koashi, M [1 ]
Buzek, V
Imoto, N
机构
[1] Grad Univ Adv Studies, SOKEN, Sch Adv Sci, CREST Res Team Interacting Carrier Elect, Kanagawa 2400193, Japan
[2] Slovak Acad Sci, Inst Phys, Bratislava 84228, Slovakia
来源
PHYSICAL REVIEW A | 2000年 / 62卷 / 05期
关键词
D O I
10.1103/PhysRevA.62.050302
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum entanglement cannot be unlimitedly shared among an arbitrary number of qubits. The degree of bipartite entanglement decreases as the number of entangled pairs in an N-qubit system increases. We analyze a system of N qubits in which an arbitrary pair of particles is entangled. We show that the maximum degree of entanglement (measured in the concurrence) between any pair of qubits is 2/N. This tight bound can be achieved when the qubits are prepared in a pure symmetric (with respect to permutations) state with just one qubit in the basis stare \0 > and the others in the basis state \1 >.
引用
收藏
页码:050302 / 050301
页数:4
相关论文
共 31 条
[1]  
[Anonymous], PHYS REV A
[2]  
[Anonymous], 1993, Quantum Theory: Concepts and Methods, Fundamental Theories of Physics
[3]  
Bell J. S., 1964, Physics Physique Fizika, V1, P195, DOI [DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
[4]  
Bennett C. H., QUANTPH9908073
[5]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[6]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[7]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[8]  
COFFMAN V, QUANTPH9907047
[9]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[10]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663