Internal electron transport barrier due to neoclassical ambipolarity in the Helically Symmetric Experiment

被引:31
作者
Lore, J. [1 ]
Guttenfelder, W. [2 ]
Briesemeister, A. [1 ]
Anderson, D. T. [1 ]
Anderson, F. S. B. [1 ]
Deng, C. B. [3 ]
Likin, K. M. [1 ]
Spong, D. A. [4 ]
Talmadge, J. N. [1 ]
Zhai, K. [1 ]
机构
[1] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
[2] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[3] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90024 USA
[4] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
plasma radiofrequency heating; plasma simulation; plasma temperature; plasma transport processes; plasma turbulence; stellarators; thermal diffusivity; ROOT CONFINEMENT; PLASMA TRANSPORT; TOROIDAL PLASMA; FIELD; COEFFICIENTS; STELLARATOR; TEMPERATURE; VISCOSITY; FLOWS; MODE;
D O I
10.1063/1.3300465
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Electron cyclotron heated plasmas in the Helically Symmetric Experiment (HSX) feature strongly peaked electron temperature profiles; central temperatures are 2.5 keV with 100 kW injected power. These measurements, coupled with neoclassical predictions of large "electron root" radial electric fields with strong radial shear, are evidence of a neoclassically driven thermal transport barrier. Neoclassical transport quantities are calculated using the PENTA code [D. A. Spong, Phys. Plasmas 12, 056114 (2005)], in which momentum is conserved and parallel flow is included. Unlike a conventional stellarator, which exhibits strong flow damping in all directions on a flux surface, quasisymmetric stellarators are free to rotate in the direction of symmetry, and the effect of momentum conservation in neoclassical calculations may therefore be significant. Momentum conservation is shown to modify the neoclassical ion flux and ambipolar ion root radial electric fields in the quasisymmetric configuration. The effect is much smaller in a HSX configuration where the symmetry is spoiled. In addition to neoclassical transport, a model of trapped electron mode turbulence is used to calculate the turbulent-driven electron thermal diffusivity. Turbulent transport quenching due to the neoclassically predicted radial electric field profile is needed in predictive transport simulations to reproduce the peaking of the measured electron temperature profile [Guttenfelder , Phys. Rev. Lett. 101, 215002 (2008)]. (C) 2010 American Institute of Physics. [doi:10.1063/1.3300465]
引用
收藏
页数:10
相关论文
共 7 条
  • [1] Characteristics of electron internal transport barrier in Heliotron J
    Kenmochi, N.
    Minami, T.
    Takahashi, C.
    Mochizuki, S.
    Nishioka, K.
    Kobayashi, S.
    Nagasaki, K.
    Nakamura, Y.
    Okada, H.
    Kado, S.
    Yamamoto, S.
    Ohshima, S.
    Konoshima, S.
    Weir, G. M.
    Otani, Y.
    Mizuuchi, T.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (05)
  • [2] Energetic-Electron-Driven Instability in the Helically Symmetric Experiment
    Deng, C. B.
    Brower, D. L.
    Breizman, B. N.
    Spong, D. A.
    Almagri, A. F.
    Anderson, D. T.
    Anderson, F. S. B.
    Ding, W. X.
    Guttenfelder, W.
    Likin, K. M.
    Talmadge, J. N.
    PHYSICAL REVIEW LETTERS, 2009, 103 (02)
  • [3] Parallel flow driven by electron cyclotron heating in the helically symmetric experiment
    Yamamoto, Y.
    Murakami, S.
    Chang, C. C.
    Kumar, S. T. A.
    Talmadge, J. N.
    Likin, K. M.
    Anderson, D. T.
    NUCLEAR FUSION, 2022, 62 (06)
  • [4] Reformation of the Electron Internal Transport Barrier with the Appearance of a Magnetic Island
    Kenmochi, N.
    Minami, T.
    Mizuuchi, T.
    Takahashi, C.
    Weir, G. M.
    Nishioka, K.
    Kobayashi, S.
    Nakamura, Y.
    Okada, H.
    Kado, S.
    Yamamoto, S.
    Ohshima, S.
    Konoshima, S.
    Ohtani, Y.
    Nagasaki, K.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [5] Isotope effect in transient electron thermal transport property and its impact on the electron internal transport barrier formation in LHD*
    Kobayashi, T.
    Ida, K.
    Tanaka, K.
    Yoshinuma, M.
    Tsujimura, T. Ii
    Inagaki, S.
    Tokuzawa, T.
    Tsuchiya, H.
    Tamura, N.
    Igami, H.
    Yoshimura, Y.
    Itoh, S-I
    Itoh, K.
    NUCLEAR FUSION, 2020, 60 (07)
  • [6] Suppressing electron turbulence and triggering internal transport barriers with reversed magnetic shear in the National Spherical Torus Experiment
    Peterson, J. L.
    Bell, R.
    Candy, J.
    Guttenfelder, W.
    Hammett, G. W.
    Kaye, S. M.
    LeBlanc, B.
    Mikkelsen, D. R.
    Smith, D. R.
    Yuh, H. Y.
    PHYSICS OF PLASMAS, 2012, 19 (05)
  • [7] Electron transport barrier and high confinement in configurations with internal islands close to the plasma edge of W7-X
    Chaudhary, N.
    Hirsch, M.
    Andreeva, T.
    Geiger, J.
    Wolf, R. C.
    Wurden, G. A.
    NUCLEAR FUSION, 2024, 64 (10)