Theory of the Tertiary Instability and the Dimits Shift from Reduced Drift-Wave Models

被引:34
作者
Zhu, Hongxuan [1 ,2 ]
Zhou, Yao [1 ]
Dodin, I. Y. [1 ,2 ]
机构
[1] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[2] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
基金
英国工程与自然科学研究理事会;
关键词
ZONAL FLOWS; TURBULENCE; DRIVEN; PLASMA;
D O I
10.1103/PhysRevLett.124.055002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Tertiary modes in electrostatic drift-wave turbulence are localized near extrema of the zonal velocity U(x) with respect to the radial coordinate x. We argue that these modes can be described as quantum harmonic oscillators with complex frequencies, so their spectrum can be readily calculated. The corresponding growth rate gamma(TI) is derived within the modified Hasegawa-Wakatani model. We show that gamma(TI) equals the primary-instability growth rate plus a term that depends on the local U ''; hence, the instability threshold is shifted compared to that in homogeneous turbulence. This provides a generic explanation of the well-known yet elusive Dimits shift, which we find explicitly in the Terry-Horton limit. Linearly unstable tertiary modes either saturate due to the evolution of the zonal density or generate radially propagating structures when the shear vertical bar U'vertical bar is sufficiently weakened by viscosity. The Dimits regime ends when such structures are generated continuously.
引用
收藏
页数:6
相关论文
共 47 条
[1]   Linearized model Fokker-Planck collision operators for gyrokinetic simulations. I. Theory [J].
Abel, I. G. ;
Barnes, M. ;
Cowley, S. C. ;
Dorland, W. ;
Schekochihin, A. A. .
PHYSICS OF PLASMAS, 2008, 15 (12)
[2]  
[Anonymous], 1993, THESIS PRINCETON U
[3]   Linearized model Fokker-Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests [J].
Barnes, M. ;
Abel, I. G. ;
Dorland, W. ;
Ernst, D. R. ;
Hammett, G. W. ;
Ricci, P. ;
Rogers, B. N. ;
Schekochihin, A. A. ;
Tatsuno, T. .
PHYSICS OF PLASMAS, 2009, 16 (07)
[4]   INFLUENCE OF SHEARED POLOIDAL ROTATION ON EDGE TURBULENCE [J].
BIGLARI, H ;
DIAMOND, PH ;
TERRY, PW .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (01) :1-4
[5]  
Burns K. J., PHYS REV RES
[6]   Zonal flows in plasma - a review [J].
Diamond, PH ;
Itoh, SI ;
Itoh, K ;
Hahm, TS .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (05) :R35-R161
[7]   Secondary instability in drift wave turbulence as a mechanism for zonal flow and avalanche formation [J].
Diamond, PH ;
Champeaux, S ;
Malkov, M ;
Das, A ;
Gruzinov, I ;
Rosenbluth, MN ;
Holland, C ;
Wecht, B ;
Smolyakov, AI ;
Hinton, FL ;
Lin, Z ;
Hahm, TS .
NUCLEAR FUSION, 2001, 41 (08) :1067-1080
[8]   Comparisons and physics basis of tokamak transport models and turbulence simulations [J].
Dimits, AM ;
Bateman, G ;
Beer, MA ;
Cohen, BI ;
Dorland, W ;
Hammett, GW ;
Kim, C ;
Kinsey, JE ;
Kotschenreuther, M ;
Kritz, AH ;
Lao, LL ;
Mandrekas, J ;
Nevins, WM ;
Parker, SE ;
Redd, AJ ;
Shumaker, DE ;
Sydora, R ;
Weiland, J .
PHYSICS OF PLASMAS, 2000, 7 (03) :969-983
[9]   Quasioptical modeling of wave beams with and without mode conversion. I. Basic theory [J].
Dodin, I. Y. ;
Ruiz, D. E. ;
Yanagihara, K. ;
Zhou, Y. ;
Kubo, S. .
PHYSICS OF PLASMAS, 2019, 26 (07)
[10]   DEVELOPMENTS IN THE GYROFLUID APPROACH TO TOKAMAK TURBULENCE SIMULATIONS [J].
HAMMETT, GW ;
BEER, MA ;
DORLAND, W ;
COWLEY, SC ;
SMITH, SA .
PLASMA PHYSICS AND CONTROLLED FUSION, 1993, 35 (08) :973-985