Character varieties of free groups are Gorenstein but not always factorial

被引:4
作者
Lawton, Sean [1 ]
Manon, Christopher [1 ]
机构
[1] George Mason Univ, Dept Math Sci, 4400 Univ Dr, Fairfax, VA 22030 USA
基金
美国国家科学基金会;
关键词
Character variety; Moduli space; Free group; Reductive; Gorenstein; UFD; DUALITY; MODULI; RINGS;
D O I
10.1016/j.jalgebra.2016.01.044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fix a rank g free group F-g and a connected reductive complex algebraic group G. Let chi (F-g, G) be the G-character variety of F-g. When the derived subgroup DG < G is simply connected we show that chi (F-g, G) is factorial (which implies it is Gorenstein), and provide examples to show that when DG is not simply connected chi (F-g, G) need not even be locally factorial. Despite the general failure of factoriality of these moduli spaces, using different methods, we show that chi (F-g, G) is always Gorenstein. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:278 / 293
页数:16
相关论文
共 37 条
[1]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[2]  
Bruns Winfried, 1993, Cambridge Studies in Advanced Mathematics, V39
[3]   PLANE-CURVES ASSOCIATED TO CHARACTER VARIETIES OF 3-MANIFOLDS [J].
COOPER, D ;
CULLER, M ;
GILLET, H ;
LONG, DD ;
SHALEN, PB .
INVENTIONES MATHEMATICAE, 1994, 118 (01) :47-84
[4]  
Eisenbud D., 1995, COMMUTATIVE ALGEBRA
[5]   SINGULARITIES OF FREE GROUP CHARACTER VARIETIES [J].
Florentino, Carlos ;
Lawton, Sean .
PACIFIC JOURNAL OF MATHEMATICS, 2012, 260 (01) :149-179
[6]  
Florentino Carlos, 2016, ANN SC NO S IN PRESS
[7]  
Goldman William M., 1988, Contemp Math, P169
[8]  
Grothendieck A., 1958, Sem. Claude Chevalley, V3, P1
[9]  
Hartshorne R., 1977, Graduate Texts in Mathematics, V52
[10]   Mirror symmetry, Langlands duality, and the Hitchin system [J].
Hausel, T ;
Thaddeus, M .
INVENTIONES MATHEMATICAE, 2003, 153 (01) :197-229