The emergence of typical entanglement in two-party random processes

被引:63
作者
Dahlsten, O. C. O.
Oliveira, R.
Plenio, M. B.
机构
[1] Imperial Coll London, Inst Math Sci, London SW7 2PG, England
[2] Imperial Coll London, QOLS, Blackett Lab, London SW7 2BW, England
[3] IMPA Estrada Dona Castorina, Inst Nacl Matemat Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
关键词
D O I
10.1088/1751-8113/40/28/S16
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the entanglement within a system undergoing a random, local process. We find that there is initially a phase of very fast generation and spread of entanglement. At the end of this phase the entanglement is typically maximal. In Oliveira et al (2007 Phys. Rev. Lett. 98 130502) we proved that the maximal entanglement is reached to a fixed arbitrary accuracy within O(N-3) steps, where N is the total number of qubits. Here we provide a detailed and more pedagogical proof. We demonstrate that one can use the so- called stabilizer gates to simulate this process efficiently on a classical computer. Furthermore, we discuss three ways of identifying the transition from the phase of rapid spread of entanglement to the stationary phase: (i) the time when saturation of the maximal entanglement is achieved, (ii) the cutoff moment, when the entanglement probability distribution is practically stationary, and (iii) themoment block entanglement exhibits volume scaling. We furthermore investigate the mixed state and multipartite setting. Numerically, we find that the mutual information appears to behave similarly to the quantum correlations and that there is a well-behaved phase-space flow of entanglement properties towards an equilibrium. We describe how the emergence of typical entanglement can be used to create a much simpler tripartite entanglement description. The results form a bridge between certain abstract results concerning typical (also known as generic) entanglement relative to an unbiased distribution on pure states and the more physical picture of distributions emerging from random local interactions.
引用
收藏
页码:8081 / 8108
页数:28
相关论文
共 54 条
[1]   Optimal superdense coding of entangled states [J].
Abeyesinghe, Anura ;
Hayden, Patrick ;
Smith, Graeme ;
Winter, Andreas J. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (08) :3635-3641
[2]   Ground-state approximation for strongly interacting spin systems in arbitrary spatial dimension [J].
Anders, S. ;
Plenio, M. B. ;
Duer, W. ;
Verstraete, F. ;
Briegel, H. -J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (10)
[3]   Entanglement properties of the harmonic chain [J].
Audenaert, K ;
Eisert, J ;
Plenio, MB ;
Werner, RR .
PHYSICAL REVIEW A, 2002, 66 (04) :14
[4]   Entanglement on mixed stabilizer states: normal forms and reduction procedures [J].
Audenaert, KMR ;
Plenio, MB .
NEW JOURNAL OF PHYSICS, 2005, 7
[5]  
BENNETT CH, 2001, PHYS REV A, V63
[6]  
BUHMAN H, 2005, QUANTPH0504078
[7]   Spin gases:: Quantum entanglement driven by classical kinematics -: art. no. 180502 [J].
Calsamiglia, J ;
Hartmann, L ;
Dür, W ;
Briegel, HJ .
PHYSICAL REVIEW LETTERS, 2005, 95 (18)
[8]   Entanglement-area law for general bosonic harmonic lattice systems [J].
Cramer, M ;
Eisert, J ;
Plenio, MB ;
Dreissig, J .
PHYSICAL REVIEW A, 2006, 73 (01)
[9]  
Dahlsten OCO, 2006, QUANTUM INF COMPUT, V6, P527
[10]  
DANKERT C, 2006, QUANTPH0606161