Strain mapping accuracy improvement using super-resolution techniques

被引:12
作者
Barcena-Gonzalez, G. [1 ]
Guerrero-Lebrero, M. P. [1 ]
Guerrero, E. [1 ]
Fernandez-Reyes, D. [2 ]
Gonzalez, D. [2 ]
Mayoral, A. [3 ,4 ]
Utrilla, A. D. [5 ]
Ulloa, J. M. [5 ]
Galindo, P. L. [1 ]
机构
[1] Univ Cadiz, Dept Comp Sci & Engn, Cadiz 11519, Spain
[2] Univ Cadiz, Dept Mat Sci & Met Engn & Inorgan Chem, Cadiz 11519, Spain
[3] Univ Zaragoza, Inst Nanosci Aragon, Zaragoza, Spain
[4] Univ Zaragoza, Lab Adv Microscopies, Zaragoza, Spain
[5] Univ Politecn Madrid, Inst Syst Based Optoelect & Microtechnol ISOM, Madrid, Spain
关键词
High-resolution high-angular annular dark field; image reconstruction; strain analysis; CRYSTAL-STRUCTURE ANALYSIS; GEOMETRIC PHASE-ANALYSIS; IMAGES; ALGORITHM; NOISE; DRIFT;
D O I
10.1111/jmi.12341
中图分类号
TH742 [显微镜];
学科分类号
摘要
Super-resolution (SR) software-based techniques aim at generating a final image by combining several noisy frames with lower resolution from the same scene. A comparative study on high-resolution high-angle annular dark field images of InAs/GaAs QDs has been carried out in order to evaluate the performance of the SR technique. The obtained SR images present enhanced resolution and higher signal-to-noise (SNR) ratio and sharpness regarding the experimental images. In addition, SR is also applied in the field of strain analysis using digital image processing applications such as geometrical phase analysis and peak pairs analysis. The precision of the strain mappings can be improved when SR methodologies are applied to experimental images.
引用
收藏
页码:50 / 58
页数:9
相关论文
共 30 条
  • [1] Optimized imaging using non-rigid registration
    Berkels, Benjamin
    Binev, Peter
    Blom, Douglas A.
    Dahmen, Wolfgang
    Sharpley, Robert C.
    Vogt, Thomas
    [J]. ULTRAMICROSCOPY, 2014, 138 : 46 - 56
  • [2] Imaging intracellular fluorescent proteins at nanometer resolution
    Betzig, Eric
    Patterson, George H.
    Sougrat, Rachid
    Lindwasser, O. Wolf
    Olenych, Scott
    Bonifacino, Juan S.
    Davidson, Michael W.
    Lippincott-Schwartz, Jennifer
    Hess, Harald F.
    [J]. SCIENCE, 2006, 313 (5793) : 1642 - 1645
  • [3] Binev P., 2012, MODELING NANOSCALE I, P127, DOI DOI 10.1007/978-1-4614-2191-7_5
  • [4] Correcting scanning instabilities from images of periodic structures
    Braidy, Nadi
    Le Bouar, Yann
    Lazar, Sorin
    Ricolleau, Christinan
    [J]. ULTRAMICROSCOPY, 2012, 118 : 67 - 76
  • [5] A non-local algorithm for image denoising
    Buades, A
    Coll, B
    Morel, JM
    [J]. 2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, : 60 - 65
  • [6] Practical and Reproducible Mapping of Strains in Si Devices Using Geometric Phase Analysis of Annular Dark-Field Images From Scanning Transmission Electron Microscopy
    Chung, Jayhoon
    Lian, Guoda
    Rabenberg, Lew
    [J]. IEEE ELECTRON DEVICE LETTERS, 2010, 31 (08) : 854 - 856
  • [7] The Peak Pairs algorithm for strain mapping from HRTEM images
    Galindo, Pedro L.
    Kret, Slawomir
    Sanchez, Ana M.
    Laval, Jean-Yves
    Yanez, Andres
    Pizarro, Joaquin
    Guerrero, Elisa
    Ben, Teresa
    Molina, Sergio I.
    [J]. ULTRAMICROSCOPY, 2007, 107 (12) : 1186 - 1193
  • [8] Mapping stress and strain in nanostructures by high-resolution transmission electron microscopy
    Hytch, M. J.
    Houdellier, F.
    [J]. MICROELECTRONIC ENGINEERING, 2007, 84 (03) : 460 - 463
  • [9] Quantitative measurement of displacement and strain fields from HREM micrographs
    Hytch, MJ
    Snoeck, E
    Kilaas, R
    [J]. ULTRAMICROSCOPY, 1998, 74 (03) : 131 - 146
  • [10] Testing the accuracy of the two-dimensional object model in HAADF STEM
    Jones, Lewys
    Nellist, Peter D.
    [J]. MICRON, 2014, 63 : 47 - 51