Image Segmentation using K-means Clustering Algorithm and Subtractive Clustering Algorithm

被引:586
|
作者
Dhanachandra, Nameirakpam [1 ]
Manglem, Khumanthem [1 ]
Chanu, Yambem Jina [1 ]
机构
[1] Natl Inst Technol, Imphal 795001, Manipur, India
关键词
Image segmentation; K-means clustering; Median filter; Partial contrast stretching; Subtractive clustering;
D O I
10.1016/j.procs.2015.06.090
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Image segmentation is the classification of an image into different groups. Many researches have been done in the area of image segmentation using clustering. There are different methods and one of the most popular methods is k-means clustering algorithm. K-means clustering algorithm is an unsupervised algorithm and it is used to segment the interest area from the background. But before applying K-means algorithm, first partial stretching enhancement is applied to the image to improve the quality of the image. Subtractive clustering method is data clustering method where it generates the centroid based on the potential value of the data points. So subtractive cluster is used to generate the initial centers and these centers are used in k- means algorithm for the segmentation of image. Then finally medial filter is applied to the segmented image to remove any unwanted region from the image. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of Universal Society for Applied Research
引用
收藏
页码:764 / 771
页数:8
相关论文
共 50 条
  • [21] An Optimized Approach for Prostate Image Segmentation Using K-Means Clustering Algorithm with Elbow Method
    Sammouda, Rachid
    El-Zaart, Ali
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [22] The handwriting of Image Segmentation Using the K-Means Clustering Algorithm with Contrast Stretching and Histogram Equalization
    Munsarif, Muhammad
    Noersasongko, Edi
    Andono, Pulung Nurtantio
    Soeleman, A.
    Pujiono
    Muljono
    2021 4TH INTERNATIONAL SEMINAR ON RESEARCH OF INFORMATION TECHNOLOGY AND INTELLIGENT SYSTEMS (ISRITI 2021), 2020,
  • [23] Multispectral image clustering using enhanced genetic k-Means algorithm
    Venkatalakshmi, K.
    Anisha Praisy, P.
    Maragathavalli, R.
    MercyShalinie, S.
    Information Technology Journal, 2007, 6 (04) : 554 - 560
  • [24] Application of Improved K-means Clustering Algorithm in Customer Segmentation
    Li, Gang
    INFORMATION TECHNOLOGY APPLICATIONS IN INDUSTRY II, PTS 1-4, 2013, 411-414 : 1081 - 1084
  • [25] IMPROVEMENT IN K-MEANS CLUSTERING ALGORITHM FOR DATA CLUSTERING
    Rajeswari, K.
    Acharya, Omkar
    Sharma, Mayur
    Kopnar, Mahesh
    Karandikar, Kiran
    1ST INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION ICCUBEA 2015, 2015, : 367 - 369
  • [26] An Improved K-means Clustering Algorithm
    Wang Yintong
    Li Wanlong
    Gao Rujia
    2012 WORLD AUTOMATION CONGRESS (WAC), 2012,
  • [27] Unsupervised K-Means Clustering Algorithm
    Sinaga, Kristina P.
    Yang, Miin-Shen
    IEEE ACCESS, 2020, 8 : 80716 - 80727
  • [28] Granular K-means Clustering Algorithm
    Zhou, Chenglong
    Chen, Yuming
    Zhu, Yidong
    Computer Engineering and Applications, 2023, 59 (13) : 317 - 324
  • [29] Modified k-Means Clustering Algorithm
    Patel, Vaishali R.
    Mehta, Rupa G.
    COMPUTATIONAL INTELLIGENCE AND INFORMATION TECHNOLOGY, 2011, 250 : 307 - +
  • [30] Modified K-means clustering algorithm
    Li, Wei
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 4, PROCEEDINGS, 2008, : 618 - 621