Comparison of hp-adaptive methods in finite element electromagnetic wave propagation

被引:3
作者
Schober, Marc [1 ]
Kasper, Manfred [1 ]
机构
[1] Hamburg Univ Technol, Inst Micro Syst Technol, Hamburg, Germany
关键词
electromagnetic fields; finite element analysis; algorithmic languages;
D O I
10.1108/03321640710727782
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Purpose - This paper aims to show that simple geometry-based lip-algorithms using an explicit a posteriori error estimator are efficient in wave propagation computation of complex structures containing geometric singularities. Design/methodology/approach - Four different hp-algorithms are compared with common h- and p-adaptation in electrostatic and time-harmonic problems regarding efficiency in number of degrees of freedom and runtime. An explicit a posterio error estimator in energy norm is used for adaptive algorithms. Findings - Residual-based error estimation is sufficient to control the adaptation process. A geometry-based hp-algorithm produces the smallest number of degrees of freedom and results in shortest runtime. Predicted error algorithms may choose inappropriate kind of refinement method depending on p-enrichment threshold value. Achieving exponential error convergence is sensitive to the element-wise decision on h-refinement or p-enrichment. Research limitations/implications - Initial mesh size must be sufficiently small to confine influence of phase lag error. Practical implications - Information on implementation of hp-algorithm, and use of explicit error estimator in electromagnetic wave propagation is provided. Originality/value - The paper is a resource for developing efficient finite element software for high-frequency electromagnetic field computation providing guaranteed error bound.
引用
收藏
页码:431 / 446
页数:16
相关论文
共 26 条
[1]   Discrete dispersion relation for hp-version finite element approximation at high wave number [J].
Ainsworth, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :553-575
[2]  
ANGERTH W, 2003, ADAPTIVE FINITE ELEM
[3]  
[Anonymous], POSTERIORI ERROR EST
[4]  
[Anonymous], FINITE ELEMENT METHO
[5]  
[Anonymous], ITERATIVE SELF ADAPT
[6]   Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? [J].
Babuska, IM ;
Sauter, SA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (06) :2392-2423
[7]  
Brenner S.C., 2002, MATH THEORY FINITE E
[8]  
Díaz-Morcillo A, 2000, MICROW OPT TECHN LET, V27, P361, DOI 10.1002/1098-2760(20001205)27:5<361::AID-MOP20>3.0.CO
[9]  
2-F
[10]  
EIBNER T, 2004, 12 U READ DEP MATH