We construct some locally a"e (p) -analytic representations of GL(2)(L), L a finite extension of a"e (p) , associated to some p-adic representations of the absolute Galois group of L. We prove that the space of morphisms from these representations to the de Rham complex of Drinfel'd's upper half space has a structure of rank 2 admissible filtered (phi, N)-module. Finally, we prove that this filtered module is associated, via Fontaine's theory, to the initial Galois representation.
机构:
Seoul Natl Univ, Dept Math Sci, Seoul, South Korea
Seoul Natl Univ, Res Inst Math, Seoul, South KoreaGoethe Univ Frankfurt, Inst Math, Frankfurt, Germany
Kim, Dohyeong
Kim, Minhyong
论文数: 0引用数: 0
h-index: 0
机构:
Int Ctr Math Sci, 47 Potterrow, Edinburgh EH8 9BT, Scotland
Korea Inst Adv Study, Seoul, South KoreaGoethe Univ Frankfurt, Inst Math, Frankfurt, Germany
Kim, Minhyong
Park, Jeehoon
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Ctr Quantum Struct Modules & Spaces, Seoul, South KoreaGoethe Univ Frankfurt, Inst Math, Frankfurt, Germany
Park, Jeehoon
Yoo, Hwajong
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Res Inst Math, Seoul, South Korea
Seoul Natl Univ, Coll Liberal Studies, Seoul, South KoreaGoethe Univ Frankfurt, Inst Math, Frankfurt, Germany
机构:
Univ Paris 13, LAGA, 99 Ave Jean Baptiste Clement, F-93430 Villetaneuse, FranceUniv Paris 13, LAGA, 99 Ave Jean Baptiste Clement, F-93430 Villetaneuse, France
Pepin, Cedric
Schmidt, Tobias
论文数: 0引用数: 0
h-index: 0
机构:
Berg Univ Wuppertal, Gaussstr 20, D-42119 Wuppertal, GermanyUniv Paris 13, LAGA, 99 Ave Jean Baptiste Clement, F-93430 Villetaneuse, France