Co-repressors 2000

被引:168
作者
Burke, LJ [1 ]
Baniahmad, A [1 ]
机构
[1] Univ Giessen, Inst Genet, D-35392 Giessen, Germany
关键词
D O I
10.1096/fj.99-0943rev
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the last 5 years, many co-repressors have been identified in eukaryotes that function in a wide range of species, from yeast to Drosophila and humans. Co-repressors are coregulators that are recruited by DNA-bound transcriptional silencers and play essential roles in many pathways including differentiation, proliferation, programmed cell death, and cell cycle. Accordingly, it has been shown that aberrant interactions of co-repressors with transcriptional silencers provide the molecular basis of a variety of human diseases. Co-repressors mediate transcriptional silencing by mechanisms that include direct inhibition of the basal transcription machinery and recruitment of chromatin-modifying enzymes. Chromatin modification includes histone deacetylation, which is thought to lead to a compact chromatin structure to which the accessibility of transcriptional activators is impaired. In a general mechanistic view, the overall picture suggests that transcriptional silencers and co-repressors act in analogy to transcriptional activators and coactivators, but with the opposite effect leading to gene silencing. We provide a comprehensive overview of the currently known higher eukaryotic co-repressors, their mechanism of action, and their involvement in biological and pathophysiological pathways. We also show the different pathways that lead to the regulation of corepressor-silencer complex formation.
引用
收藏
页码:1876 / 1888
页数:13
相关论文
共 164 条
[1]   Two novel Kruppel-associated box-containing zinc-finger proteins, KRAZ1 and KRAZ2, repress transcription through functional interaction with the corepressor KAP-1 (TIF1β/KRIP-1) [J].
Agata, Y ;
Matsuda, E ;
Shimizu, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (23) :16412-16422
[2]   c-Ski acts as a transcriptional co-repressor in transforming growth factor-β signaling through interaction with Smads [J].
Akiyoshi, S ;
Inoue, H ;
Hanai, J ;
Kusanagi, K ;
Nemoto, N ;
Miyazono, K ;
Kawabata, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (49) :35269-35277
[3]   Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression [J].
Alland, L ;
Muhle, R ;
Hou, H ;
Potes, J ;
Chin, L ;
SchreiberAgus, N ;
DePinho, RA .
NATURE, 1997, 387 (6628) :49-55
[4]   Interaction of the corepressor Alien with DAX-1 is abrogated by mutations of DAX-1 involved in adrenal hypoplasia congenita [J].
Altincicek, B ;
Tenbaum, SP ;
Dressel, U ;
Thormeyer, D ;
Renkawitz, R ;
Baniahmad, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (11) :7662-7667
[5]   Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 [J].
Amir, RE ;
Van den Veyver, IB ;
Wan, M ;
Tran, CQ ;
Francke, U ;
Zoghbi, HY .
NATURE GENETICS, 1999, 23 (02) :185-188
[6]   CoREST:: A functional corepressor required for regulation of neural-specific gene expression [J].
Andrés, ME ;
Burger, C ;
Peral-Rubio, MJ ;
Battaglioli, E ;
Anderson, ME ;
Grimes, J ;
Dallman, J ;
Ballas, N ;
Mandel, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (17) :9873-9878
[7]   Groucho-dependent and -independent repression activities of runt domain proteins [J].
Aronson, BD ;
Fisher, AL ;
Blechman, K ;
Caudy, M ;
Gergen, JP .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (09) :5581-5587
[8]  
Asahara H, 1999, MOL CELL BIOL, V19, P8219
[9]   MAD-MAX TRANSCRIPTIONAL REPRESSION IS MEDIATED BY TERNARY COMPLEX-FORMATION WITH MAMMALIAN HOMOLOGS OF YEAST REPRESSOR SIN3 [J].
AYER, DE ;
LAWRENCE, QA ;
EISENMAN, RN .
CELL, 1995, 80 (05) :767-776
[10]   Histone deacetylases: transcriptional repression with SINers and NuRDs [J].
Ayer, DE .
TRENDS IN CELL BIOLOGY, 1999, 9 (05) :193-198