In Situ Adaptive Spatio-Temporal Data Summarization

被引:1
|
作者
Dutta, Soumya [1 ]
Tasnim, Humayra [2 ]
Turton, Terece L. [1 ]
Ahrens, James [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Univ New Mexico, Albuquerque, NM 87131 USA
关键词
Time-varying data; big data; data fusion; in situ analysis; information theory; visualization; data reduction; DATA FUSION;
D O I
10.1109/BigData52589.2021.9671581
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scientists nowadays use data sets generated from large-scale scientific computational simulations to understand the intricate details of various physical phenomena. These simulations produce large volumes of data at a rapid pace, containing thousands of time steps so that the spatio-temporal dynamics of the modeled phenomenon and its associated features can be captured with sufficient detail. Storing all the time steps into disks to perform traditional offline analysis will soon become prohibitive as the gap between the data generation speed and disk I/O speed continues to increase. In situ analysis, i.e., in-place analysis of data when it is being produced, has emerged as a solution to this problem. In this work, we present an information-theoretic approach for in situ reduction of large-scale time-varying data sets via a combination of key and fused time steps. We show that this approach can greatly minimize the output data storage footprint while preserving the temporal evolution of data features. A detailed in situ application study is carried out to demonstrate the in situ viability of our technique for efficiently summarizing thousands of time steps generated from a large-scale real-life computational simulation code.
引用
收藏
页码:315 / 321
页数:7
相关论文
共 50 条
  • [1] CONTENT ADAPTIVE VIDEO SUMMARIZATION USING SPATIO-TEMPORAL FEATURES
    Nam, Hyunwoo
    Yoo, Chang D.
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4003 - 4007
  • [2] Spatio-temporal summarization of dance choreographies
    Rallis, Ioannis
    Doulamis, Nikolaos
    Doulamis, Anastasios
    Voulodimos, Athanasios
    Vescoukis, Vassilios
    COMPUTERS & GRAPHICS-UK, 2018, 73 : 88 - 101
  • [3] Data-adaptive spatio-temporal filtering of GRACE data
    Prevost, Paoline
    Chanard, Kristel
    Fleitout, Luce
    Calais, Eric
    Walwer, Damian
    van Dam, Tonie
    Ghil, Michael
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 219 (03) : 2034 - 2055
  • [4] Adaptive spatio-temporal models for satellite ecological data
    Carlo Grillenzoni
    Journal of Agricultural, Biological, and Environmental Statistics, 2004, 9 : 158 - 180
  • [5] Adaptive spatio-temporal models for satellite ecological data
    Grillenzoni, C
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2004, 9 (02) : 158 - 180
  • [6] Spatio-Temporal Adaptive Fused Lasso for Proportion Data
    Yamamura, Mariko
    Ohishi, Mineaki
    Yanagihara, Hirokazu
    INTELLIGENT DECISION TECHNOLOGIES, KES-IDT 2021, 2021, 238 : 479 - 489
  • [7] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [8] Entity Spatio-temporal Evolution Summarization in Knowledge Graphs
    Yang, Erhe
    Hao, Fei
    Gao, Jie
    Wu, Yulei
    Min, Geyong
    11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 181 - 187
  • [9] Video summarization via spatio-temporal deep architecture
    Zhong, Sheng-hua
    Wu, Jiaxin
    Jiang, Jianmin
    NEUROCOMPUTING, 2019, 332 : 224 - 235
  • [10] A Framework of Spatio-Temporal Data Adaptive Visualizations for Mobile Environment
    Yu, Jianwei
    Yang, Bisheng
    2009 17TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, VOLS 1 AND 2, 2009, : 403 - 408