Vanadium redox flow batteries: A comprehensive review

被引:460
|
作者
Lourenssen, Kyle [1 ]
Williams, James [1 ]
Ahmadpour, Faraz [1 ]
Clemmer, Ryan [1 ]
Tasnim, Syeda [1 ]
机构
[1] Univ Guelph, Sch Engn, Guelph, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Renewable energy; Energy storage; Vanadium redox flow battery; Principles of vanadium redox flow battery; Design considerations of vanadium redox flow battery; Limitations of each component; ENERGY-STORAGE TECHNOLOGIES; ION-EXCHANGE MEMBRANES; CARBON FELT ELECTRODES; COMPOSITE BIPOLAR PLATES; 1 KW CLASS; GRAPHITE FELT; MIXED ACID; NEGATIVE ELECTRODE; NANOFILTRATION MEMBRANES; POSITIVE ELECTROLYTE;
D O I
10.1016/j.est.2019.100844
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Interest in the advancement of energy storage methods have risen as energy production trends toward renewable energy sources. Vanadium redox flow batteries (VRFB) are one of the emerging energy storage techniques being developed with the purpose of effectively storing renewable energy. There are currently a limited number of papers published addressing the design considerations of the VRFB, the limitations of each component and what has been/is being done to address said limitations. This review briefly discusses the current need and state of renewable energy production, the fundamental principles behind the VRFB, how it works and the technology restraints. The working principles of each component are highlighted and what design aspects/cues are to be considered when building a VRFB. The limiting determinants of some components are investigated along with the past/current research to address these limitations. Finally, critical research areas are highlighted along with future development recommendations.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Vanadium redox flow batteries: a technology review
    Cunha, Alvaro
    Martins, Jorge
    Rodrigues, Nuno
    Brito, F. P.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2015, 39 (07) : 889 - 918
  • [2] Modelling and Estimation of Vanadium Redox Flow Batteries: A Review
    Puleston, Thomas
    Clemente, Alejandro
    Costa-Castello, Ramon
    Serra, Maria
    BATTERIES-BASEL, 2022, 8 (09):
  • [3] Vanadium Redox Flow Batteries: A Review Oriented to Fluid-Dynamic Optimization
    Aramendia, Inigo
    Fernandez-Gamiz, Unai
    Martinez-San-Vicente, Adrian
    Zulueta, Ekaitz
    Lopez-Guede, Jose Manuel
    ENERGIES, 2021, 14 (01)
  • [4] A review of electrolyte additives and impurities in vanadium redox flow batteries
    Cao, Liuyue
    Skyllas-Kazacos, Maria
    Menictas, Chris
    Noack, Jens
    JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (05) : 1269 - 1291
  • [5] Electrolytes for vanadium redox flow batteries
    Wu, Xiongwei
    Liu, Jun
    Xiang, Xiaojuan
    Zhang, Jie
    Hu, Junping
    Wu, Yuping
    PURE AND APPLIED CHEMISTRY, 2014, 86 (05) : 661 - 669
  • [6] A Review of Electrolyte Additives in Vanadium Redox Flow Batteries
    Tian, Wenxin
    Du, Hao
    Wang, Jianzhang
    Weigand, Jan J.
    Qi, Jian
    Wang, Shaona
    Li, Lanjie
    MATERIALS, 2023, 16 (13)
  • [7] A review of vanadium electrolytes for vanadium redox flow batteries
    Choi, Chanyong
    Kim, Soohyun
    Kim, Riyul
    Choi, Yunsuk
    Kim, Soowhan
    Jung, Ho-Young
    Yang, Jung Hoon
    Kim, Hee-Tak
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 69 : 263 - 274
  • [8] Overview of the factors affecting the performance of vanadium redox flow batteries
    Sankaralingam, Ram Kishore
    Seshadri, Satyanarayanan
    Sunarso, Jaka
    Bhatt, Anand I.
    Kapoor, Ajay
    JOURNAL OF ENERGY STORAGE, 2021, 41
  • [9] Novel electrolyte rebalancing method for vanadium redox flow batteries
    Poli, Nicola
    Schaffer, Michael
    Trovo, Andrea
    Noack, Jens
    Guarnieri, Massimo
    Fischer, Peter
    CHEMICAL ENGINEERING JOURNAL, 2021, 405 (405)
  • [10] Redox-targeted catalysis for vanadium redox-flow batteries
    Zhang, Feifei
    Huang, Songpeng
    Wang, Xun
    Jia, Chuankun
    Du, Yonghua
    Wang, Qing
    NANO ENERGY, 2018, 52 : 292 - 299