Variable speed synergetic control for chaotic oscillation in power system

被引:42
作者
Ni, Junkang [1 ]
Liu, Chongxin [1 ]
Liu, Kai [1 ]
Pang, Xia [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect Engn, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Variable speed control; Synergetic control; Power system; Chaotic oscillation; BIFURCATIONS; NOISE;
D O I
10.1007/s11071-014-1468-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Chaotic oscillation is an undesirable phenomenon in power system and it can destroy the stability of power system. The objective of this paper is to propose variable speed synergetic control to eliminate chattering phenomenon in sliding-mode control and avoid undesirable phenomena when suppressing chaotic oscillation in power system. The prominent advantage of proposed control scheme is that it can adjust convergence speed according to the system response thus avoiding undesirable phenomena in the control process. Simulation results show that our control scheme avoids undesirable phenomena in the control process and speeds up convergence rate.
引用
收藏
页码:681 / 690
页数:10
相关论文
共 36 条
[1]   Chaos suppression of rotational machine systems via finite-time control method [J].
Aghababa, Mohammad Pourmahmood ;
Aghababa, Hasan Pourmahmood .
NONLINEAR DYNAMICS, 2012, 69 (04) :1881-1888
[2]   Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique [J].
Aghababa, Mohammad Pourmahmood .
NONLINEAR DYNAMICS, 2012, 69 (1-2) :247-261
[3]  
[Anonymous], C371061987 ANSIIEEE
[4]   The control of chaos: theory and applications [J].
Boccaletti, S ;
Grebogi, C ;
Lai, YC ;
Mancini, H ;
Maza, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (03) :103-197
[5]   Optimal robust adaptive fuzzy synergetic power system stabilizer design [J].
Bouchama, Z. ;
Harmas, M. N. .
ELECTRIC POWER SYSTEMS RESEARCH, 2012, 83 (01) :170-175
[6]   Dynamic analysis, controlling chaos and chaotification of a SMIB power system [J].
Chen, HK ;
Lin, TN ;
Chen, JH .
CHAOS SOLITONS & FRACTALS, 2005, 24 (05) :1307-1315
[7]   Adaptive impulsive synchronization of nonlinear chaotic systems [J].
Chen, Yen-Sheng ;
Chang, Chien-Cheng .
NONLINEAR DYNAMICS, 2012, 70 (03) :1795-1803
[8]   Optimal synergetic control for fractional-order systems [J].
Djennoune, Said ;
Bettayeb, Maamar .
AUTOMATICA, 2013, 49 (07) :2243-2249
[9]   Robust adaptive backstepping synchronization for a class of uncertain chaotic systems using fuzzy disturbance observer [J].
Ji, D. H. ;
Jeong, S. C. ;
Park, Ju H. ;
Won, S. C. .
NONLINEAR DYNAMICS, 2012, 69 (03) :1125-1136
[10]  
Jia Hong-jie, 2003, Proceedings of the CSEE, V23, P1