Biomedical applications of the powder-based 3D printed titanium alloys: A review

被引:65
作者
Guo, Amy X. Y. [1 ]
Cheng, Liangjie [1 ]
Zhan, Shuai [1 ]
Zhang, Shouyang [1 ]
Xiong, Wei [1 ]
Wang, Zihan [1 ]
Wang, Gang [1 ]
Cao, Shan Cecilia [1 ]
机构
[1] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
来源
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY | 2022年 / 125卷
关键词
The powder-based 3D printing technology; Ti-based alloys; Biomedical applications; Artificial intelligence; MECHANICAL-PROPERTIES; ORTHOPEDIC IMPLANTS; ANTIBACTERIAL ACTIVITY; TOPOLOGICAL DESIGN; GRAIN-REFINEMENT; BONE INGROWTH; IN-VIVO; MICROSTRUCTURE; SCAFFOLDS; DEPOSITION;
D O I
10.1016/j.jmst.2021.11.084
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
3D printing technology is a new type of precision forming technology and the core technology of the third industrial revolution. The powder-based 3D printing technology of titanium and its alloys have received great attention in biomedical applications since its advantages of custom manufacturing, costsaving, time-saving, and resource-saving potential. In particular, the personalized customization of 3D printing can meet specific needs and achieve precise control of micro-organization and structural design. The purpose of this review is to present the most advanced multi-material 3D printing methods for titanium-based biomaterials. We first reviewed the bone tissue engineering, the application of titanium alloy as bone substitutes and the development of manufacturing technology, which emphasized the advantages of 3D printing technology over traditional manufacturing methods. What is more, the optimization design of the hierarchical structure was analyzed to achieve the best mechanical properties, and the biocompatibility and osseointegration ability of the porous titanium alloy after implantation in living bodies was analyzed. Finally, we emphasized the development of digital tools such as artificial intelligence, which provides new ideas for the rational selection of processing parameters. The 3D printing titanium-based alloys will meet the huge market demand in the biomedical field, but there are still many challenges, such as the trade-off between high strength and low modulus, optimization of process parameters and structural design. We believe that the combination of mechanical models, machine learning, and metallurgical knowledge may shape the future of metal printing. ?? 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:252 / 264
页数:13
相关论文
共 123 条
  • [1] Characterisation of antibacterial copper releasing degradable phosphate glass fibres
    Abou Neel, EA
    Ahmed, I
    Pratten, J
    Nazhat, SN
    Knowles, JC
    [J]. BIOMATERIALS, 2005, 26 (15) : 2247 - 2254
  • [2] Selective laser melting of TiB2/H13 steel nanocomposites: Influence of hot isostatic pressing post-treatment
    AlMangour, Bandar
    Grzesiak, Dariusz
    Yang, Jenn-Ming
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2017, 244 : 344 - 353
  • [3] Metallic Scaffolds for Bone Regeneration
    Alvarez, Kelly
    Nakajima, Hideo
    [J]. MATERIALS, 2009, 2 (03) : 790 - 832
  • [4] [Anonymous], 2012, Standard terminology for additive manufacturing technologies
  • [5] Simple method to construct process maps for additive manufacturing using a support vector machine
    Aoyagi, Kenta
    Wang, Hao
    Sudo, Hideki
    Chiba, Akihiko
    [J]. ADDITIVE MANUFACTURING, 2019, 27 : 353 - 362
  • [6] Fabrication of porous-Ti6Al4V alloy by using hot pressing technique and Mg space holder for hard-tissue biomedical applications
    Aslan, N.
    Aksakal, B.
    Findik, F.
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2021, 32 (07)
  • [7] Selective laser melting of in situ titanium-titanium boride composites: Processing, microstructure and mechanical properties
    Attar, Hooyar
    Boenisch, Matthias
    Calin, Mariana
    Zhang, Lai-Chang
    Scudino, Sergio
    Eckert, Juergen
    [J]. ACTA MATERIALIA, 2014, 76 : 13 - 22
  • [8] Bai F, 2010, TISSUE ENG PT A, V16, P3791, DOI [10.1089/ten.tea.2010.0148, 10.1089/ten.TEA.2010.0148]
  • [9] Manufacture, characterisation and application of cellular metals and metal foams
    Banhart, J
    [J]. PROGRESS IN MATERIALS SCIENCE, 2001, 46 (06) : 559 - U3
  • [10] Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing
    Bermingham, M. J.
    StJohn, D. H.
    Krynen, J.
    Tedman-Jones, S.
    Dargusch, M. S.
    [J]. ACTA MATERIALIA, 2019, 168 : 261 - 274