Co-periodic cyclic homology

被引:3
作者
Kaledin, D. [1 ,2 ]
机构
[1] Steklov Math Inst, Algebra Geometry Sect, St Petersburg, Russia
[2] Natl Res Univ, Higher Sch Econ, Lab Algebra Geometry, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Cyclic homology; DG CATEGORIES;
D O I
10.1016/j.aim.2018.06.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following an old suggestion of M. Kontsevich, and inspired by recent work of A. Beilinson and B. Bhatt, we introduce a new version of periodic cyclic homology for DG algebras and DG categories. We call it co-periodic cyclic homology. It is always torsion, so that it vanishes in char 0. However, we show that co-periodic cyclic homology is derived-Morita invariant, and that it coincides with the usual periodic cyclic homology for smooth cohomologically bounded DG algebras over a torsion ring. For DG categories over a field of odd positive characteristic, we also establish a non-commutative generalization of the conjugate spectral sequence converging to our co-periodic cyclic homology groups. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:81 / 150
页数:70
相关论文
共 19 条
[1]  
Beilinson A, 2013, CAMB J MATH, V1, P1
[2]  
Beilinson A., 1983, SOC MATH FRANCE, V100
[3]  
BEILINSON AA, 1987, LECT NOTES MATH, V1289, P27
[4]  
CONNES A, 1983, CR ACAD SCI I-MATH, V296, P953
[5]  
Deligne P., 1971, Publications Mathematiques de l'IHES, V40, P5, DOI 10.1007/BF02684692
[6]   DG quotients of DG categories [J].
Drinfeld, V .
JOURNAL OF ALGEBRA, 2004, 272 (02) :643-691
[7]  
FEIGIN BL, 1987, LECT NOTES MATH, V1289, P67
[8]  
Illusie L., 1971, LECT NOTES MATH, V239
[9]  
Illusie L., 1972, LECT NOTES MATH, V283
[10]  
Kaledin D, 2008, PURE APPL MATH Q, V4, P785