Characterization and modeling of dye-sensitized solar cells

被引:354
作者
Peter, L. M. [1 ]
机构
[1] Univ Bath, Dept Chem, Bath BA2 5NB, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1021/jp069058b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent progress toward understanding the processes taking place in dye-sensitized nanocrystalline solar cells (DSC) is reviewed, and some areas characterized by controversy or poor understanding are highlighted. The thermodynamic and kinetic criteria for successful cell design are outlined, and experimental results obtained by a range of methods for characterizing the stationary and dynamic properties of DCS are discussed. These methods include direct measurement of the quasi-Fermi level using an indicator electrode and charge extraction measurements to determine the energetic distribution of electron traps in the nanocrystalline oxide. The influence of electron trapping on dynamic measurements of electron transfer and transport is discussed within the framework of the quasistatic assumption, and a new assessment of the electron diffusion length in the DSC is given, which suggests that collection of photoinjected electrons should be considerably more efficient than previously assumed.
引用
收藏
页码:6601 / 6612
页数:12
相关论文
共 74 条
[1]   Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J].
Bach, U ;
Lupo, D ;
Comte, P ;
Moser, JE ;
Weissörtel, F ;
Salbeck, J ;
Spreitzer, H ;
Grätzel, M .
NATURE, 1998, 395 (6702) :583-585
[2]   Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells [J].
Bailes, M ;
Cameron, PJ ;
Lobato, K ;
Peter, LM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (32) :15429-15435
[3]   Electrochemical reaction rates in a dye-sensitised solar cell-the iodide/tri-iodide redox system [J].
Bay, L ;
West, K ;
Winther-Jensen, B ;
Jacobsen, T .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (03) :341-351
[4]   Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method [J].
Bisquert, J ;
Zaban, A ;
Greenshtein, M ;
Mora-Seró, I .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (41) :13550-13559
[5]   Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells [J].
Bisquert, J .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2003, 5 (24) :5360-5364
[6]   Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells [J].
Bisquert, J ;
Vikhrenko, VS .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (07) :2313-2322
[7]   Analysis of the mechanisms of electron recombination in nanoporous TiO2 dye-sensitized solar cells.: Nonequilibrium steady-state statistics and interfacial electron transfer via surface states [J].
Bisquert, J ;
Zaban, A ;
Salvador, P .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (34) :8774-8782
[8]   Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells [J].
Boschloo, Gerrit ;
Haggman, Leif ;
Hagfeldt, Anders .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (26) :13144-13150
[9]   How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells? [J].
Cameron, PJ ;
Peter, LM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (15) :7392-7398
[10]   How important is the back reaction of electrons via the substrate in dye-sensitized nanocrystalline solar cells? [J].
Cameron, PJ ;
Peter, LM ;
Hore, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (02) :930-936