Field-based DGTD/PIC technique for general and stable simulation of interaction between light and electron bunches

被引:11
作者
Fallahi, Arya [1 ]
Kaertner, Franz [1 ,2 ,3 ,4 ,5 ]
机构
[1] DESY, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany
[2] Univ Hamburg, Dept Phys, D-20355 Hamburg, Germany
[3] Hamburg Ctr Ultrafast Imaging, D-22761 Hamburg, Germany
[4] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[5] MIT, Elect Res Lab, Cambridge, MA 02139 USA
基金
欧洲研究理事会;
关键词
electron acceleration; numerical simulation; particle in cell; discontinuous Galerkin method; field emission; DISCONTINUOUS GALERKIN METHODS; MAXWELL-VLASOV EQUATIONS; PARTICLE SIMULATION; UNSTRUCTURED GRIDS; EWALD SUMS; ORDER; ACCELERATION; LASER; PLASMAS; BEAMS;
D O I
10.1088/0953-4075/47/23/234015
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce a hybrid technique based on the discontinuous Galerkin time domain (DGTD) and the particle in cell (PIC) simulation methods for the analysis of interaction between light and charged particles. The DGTD algorithm is a three-dimensional, dual-field and fully explicit method for efficiently solving Maxwell equations in the time domain on unstructured grids. On the other hand, the PIC algorithm is a versatile technique for the simulation of charged particles in an electromagnetic field. This paper introduces a novel strategy for combining both methods to solve for the electron motion and field distribution when an optical beam interacts with an electron bunch in a very general geometry. The developed software offers a complete and stable numerical solution of the problem for arbitrary charge and field distributions in the time domain on unstructured grids. For this purpose, an advanced search algorithm is developed for fast calculation of field data at charge points and for later importing to the PIC simulations. In addition, we propose a field-based coupling between the two methods resulting in a stable and precise time marching scheme for both fields and charged particle motion. To benchmark the solver, some examples are numerically solved and compared with analytical solutions. Eventually, the developed software is utilized to simulate the field emission from a flat metal plate and a silicon nano-tip. In the future, we will use this technique for the simulation and design of ultrafast compact x-ray sources.
引用
收藏
页数:13
相关论文
共 51 条
  • [1] Operation of a free-electron laser from the extreme ultraviolet to the water window
    Ackermann, W.
    Asova, G.
    Ayvazyan, V.
    Azima, A.
    Baboi, N.
    Baehr, J.
    Balandin, V.
    Beutner, B.
    Brandt, A.
    Bolzmann, A.
    Brinkmann, R.
    Brovko, O. I.
    Castellano, M.
    Castro, P.
    Catani, L.
    Chiadroni, E.
    Choroba, S.
    Cianchi, A.
    Costello, J. T.
    Cubaynes, D.
    Dardis, J.
    Decking, W.
    Delsim-Hashemi, H.
    Delserieys, A.
    Di Pirro, G.
    Dohlus, M.
    Duesterer, S.
    Eckhardt, A.
    Edwards, H. T.
    Faatz, B.
    Feldhaus, J.
    Floettmann, K.
    Frisch, J.
    Froehlich, L.
    Garvey, T.
    Gensch, U.
    Gerth, Ch.
    Goerler, M.
    Golubeva, N.
    Grabosch, H.-J.
    Grecki, M.
    Grimm, O.
    Hacker, K.
    Hahn, U.
    Han, J. H.
    Honkavaara, K.
    Hott, T.
    Huening, M.
    Ivanisenko, Y.
    Jaeschke, E.
    [J]. NATURE PHOTONICS, 2007, 1 (06) : 336 - 342
  • [2] A Spurious-Free Discontinuous Galerkin Time-Domain Method for the Accurate Modeling of Microwave Filters
    Alvarez, Jesus
    Diaz Angulo, Luis
    Rubio Bretones, Amelia
    Garcia, Salvador G.
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2012, 60 (08) : 2359 - 2369
  • [3] Dielectric Wakefield Acceleration of a Relativistic Electron Beam in a Slab-Symmetric Dielectric Lined Waveguide
    Andonian, G.
    Stratakis, D.
    Babzien, M.
    Barber, S.
    Fedurin, M.
    Hemsing, E.
    Kusche, K.
    Muggli, P.
    O'Shea, B.
    Wei, X.
    Williams, O.
    Yakimenko, V.
    Rosenzweig, J. B.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (24)
  • [4] Ansoft H, 2009, 3 D ELECTROMAGNETIC
  • [5] Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure
    Antipov, S.
    Jing, C.
    Kanareykin, A.
    Butler, J. E.
    Yakimenko, V.
    Fedurin, M.
    Kusche, K.
    Gai, W.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (13)
  • [6] Above-threshold ionization: From classical features to quantum effects
    Becker, W
    Grasbon, F
    Kopold, R
    Milosevic, DB
    Paulus, GG
    Walther, H
    [J]. ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 48, 2002, 48 : 35 - 98
  • [7] PIConGPU: A Fully Relativistic Particle-in-Cell Code for a GPU Cluster
    Burau, Heiko
    Widera, Renee
    Hoenig, Wolfgang
    Juckeland, Guido
    Debus, Alexander
    Kluge, Thomas
    Schramm, Ulrich
    Cowan, Tomas E.
    Sauerbrey, Roland
    Bussmann, Michael
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2010, 38 (10) : 2831 - 2839
  • [8] Discontinuous Galerkin methods in nanophotonics
    Busch, Kurt
    Koenig, Michael
    Niegemann, Jens
    [J]. LASER & PHOTONICS REVIEWS, 2011, 5 (06) : 773 - 809
  • [9] Collins G B, 1948, MICROWAVE MAGNETRONS, V6
  • [10] PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS
    DARDEN, T
    YORK, D
    PEDERSEN, L
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) : 10089 - 10092