Surface properties of activated sludge-derived biochar determine the facilitating effects on Geobacter co-cultures

被引:114
作者
Zhang, Peng [1 ]
Zheng, Shiling [2 ]
Liu, Jia [1 ]
Wang, Bingchen [2 ]
Liu, Fanghua [2 ]
Feng, Yujie [1 ]
机构
[1] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm, 73 Huanghe Rd, Harbin 150090, Heilongjiang, Peoples R China
[2] Chinese Acad Sci, Yantai Inst Coastal Zone Res, Key Lab Coastal Biol & Biol Resources Utilizat, 17 Chunhui Rd, Yantai 264003, Shandong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Biochar; Geobacter; Surface functional group; Conductivity; Surface charge; INTERSPECIES ELECTRON-TRANSFER; ANAEROBIC GRANULAR SLUDGE; ELECTROCHEMICAL-BEHAVIOR; ELECTRICITY-GENERATION; PYROLYSIS TEMPERATURE; HUMIC SUBSTANCES; SEWAGE-SLUDGE; CARBON; OXIDATION; EXCHANGE;
D O I
10.1016/j.watres.2018.05.058
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Biochar has been reported to facilitate direct interspecies electron transfer (DIET) in co-cultures between Geobacter metallireducens and Geobacter sulfurreducens, a model defined co-culture system. In this study, the biochar derived from the activated sludge with different pyrolysis temperature was added to the co-cultures, the ethanol metabolism rates (Re) and succinate production rates (Rs) of co-culture with biochar-800 were 1.05- and 1.42-fold higher than that without addition. The results suggested that the conductivity of the biochar did not correlate with the facilitating effect of the biochar on the co-culture metabolism. Furthermore, the surface functional group and surface charge of biochar may also influence the facilitating effect on the interspecies electron transfer between the two Geobacter cells. Based on these results, it supported that the electron transfer depending on the charging and discharging process of the surface functional groups might play a major role in facilitating the direct electron transfer process by the biochar derived from activated sludge here. This study could shed light on the better understanding of the bacteria-biochar electron transfer system and the potential utilization of the biochar in the environmental wastewater treatments. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:441 / 451
页数:11
相关论文
共 65 条
[1]   Biochar as a Fuel: 1. Properties and Grindability of Biochars Produced from the Pyrolysis of Mallee Wood under Slow-Heating Conditions [J].
Abdullah, Hanisom ;
Wu, Hongwei .
ENERGY & FUELS, 2009, 23 (08) :4174-4181
[2]   Response of anaerobic granular sludge to iron oxide nanoparticles and multi-wall carbon nanotubes during beet sugar industrial wastewater treatment [J].
Ambuchi, John J. ;
Zhang, Zhaohan ;
Shan, Lili ;
Liang, Dandan ;
Zhang, Peng ;
Feng, Yujie .
WATER RESEARCH, 2017, 117 :87-94
[3]   The characterization of nitrogen-enriched activated carbons by IR, XPS and LSER methods [J].
Burg, P ;
Fydrych, P ;
Cagniant, D ;
Nanse, G ;
Bimer, J ;
Jankowska, A .
CARBON, 2002, 40 (09) :1521-1531
[4]   Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria [J].
Byrne, James M. ;
Klueglein, Nicole ;
Pearce, Carolyn ;
Rosso, Kevin M. ;
Appel, Erwin ;
Kappler, Andreas .
SCIENCE, 2015, 347 (6229) :1473-1476
[5]   Characterization of sewage sludges by primary and secondary pyrolysis [J].
Caballero, JA ;
Front, R ;
Marcilla, A ;
Conesa, JA .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 1997, 40-1 :433-450
[6]   Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures [J].
Chen, Shanshan ;
Rotaru, Amelia-Elena ;
Liu, Fanghua ;
Philips, Jo ;
Woodard, Trevor L. ;
Nevin, Kelly P. ;
Lovley, Derek R. .
BIORESOURCE TECHNOLOGY, 2014, 173 :82-86
[7]   Promoting Interspecies Electron Transfer with Biochar [J].
Chen, Shanshan ;
Rotaru, Amelia-Elena ;
Shrestha, Pravin Malla ;
Malvankar, Nikhil S. ;
Liu, Fanghua ;
Fan, Wei ;
Nevin, Kelly P. ;
Lovley, Derek R. .
SCIENTIFIC REPORTS, 2014, 4
[8]   Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: Influence of temperature [J].
Chen, Yingquan ;
Yang, Haiping ;
Wang, Xianhua ;
Zhang, Shihong ;
Chen, Hanping .
BIORESOURCE TECHNOLOGY, 2012, 107 :411-418
[9]   Compositions and sorptive properties of crop residue-derived chars [J].
Chun, Y ;
Sheng, GY ;
Chiou, CT ;
Xing, BS .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (17) :4649-4655
[10]   Development of a genetic system for Geobacter sulfurreducens [J].
Coppi, MV ;
Leang, C ;
Sandler, SJ ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (07) :3180-3187