Graphene nanoribbons: fabrication, properties and devices

被引:192
作者
Celis, A. [1 ,2 ]
Nair, M. N. [2 ]
Taleb-Ibrahimi, A. [2 ]
Conrad, E. H. [3 ]
Berger, C. [3 ,4 ]
de Heer, W. A. [4 ]
Tejeda, A. [1 ,2 ]
机构
[1] Univ Paris Saclay, Univ Paris 11, CNRS, Lab Phys Solides, F-91405 Orsay, France
[2] Synchrotron SOLEIL UR1 CNRS, F-91192 Gif Sur Yvette, France
[3] Georgia Inst Technol, Atlanta, GA 30332 USA
[4] Univ Grenoble, Inst Neel CNRS, F-38042 Grenoble, France
基金
美国国家科学基金会;
关键词
graphene; nanoribbon; fabrication; devices; FIELD-EFFECT TRANSISTORS; WALLED CARBON NANOTUBES; EPITAXIAL GRAPHENE; BAND-GAP; DIRECT GROWTH; GRAPHITIC NANORIBBONS; ATOMIC-STRUCTURE; LAYER GRAPHENE; SINGLE-LAYER; SIC; 0001;
D O I
10.1088/0022-3727/49/14/143001
中图分类号
O59 [应用物理学];
学科分类号
摘要
Graphene nanoribbons are fundamental components to the development of graphene nanoelectronics. At the nanoscale, electronic confinement effects and electronic edge states become essential to the properties of graphene. These effects depend critically on the ribbon width and the nature of the ribbon edge, the control of which at the atomic scale is a major challenge. Graphene nanoribbons have been largely studied theoretically, experimentally and with the perspective of electronic applications. We review the basic properties of graphene nanoribbons and recent progress in fabrication processes, focusing on the question of the electronic gap. We examine top-down and bottom-up approaches to fabricate graphene nanoribbons by lithographic, catalytic cutting, chemical assembly and epitaxial growth methods and compare their electronic characteristics.
引用
收藏
页数:17
相关论文
共 50 条
[41]   First-Principles Study of Heat Transport Properties of Graphene Nanoribbons [J].
Tan, Zhen Wah ;
Wang, Jian-Sheng ;
Gan, Chee Kwan .
NANO LETTERS, 2011, 11 (01) :214-219
[42]   Graphene Nanoribbons: Towards Graphitic Materials with Predefined Dimensions and Electronic Properties [J].
Pefkianakis, Eleftherios K. ;
Sakellariou, Georgios ;
Vougioukalakis, Georgios C. .
CURRENT ORGANIC CHEMISTRY, 2015, 19 (18) :1850-1871
[43]   Fabrication and ab initio study of downscaled graphene nanoelectronic devices [J].
Mizuta, Hiroshi ;
Moktadir, Zakaria ;
Boden, Stuart A. ;
Kalhor, Nima ;
Hang, Shuojin ;
Schmidt, Marek E. ;
Nguyen Tien Cuong ;
Chi, Dam Hieu ;
Otsuka, Nobuo ;
Manoharan, Muruagnathan ;
Tsuchiya, Yoshishige ;
Chong, Harold ;
Rutt, Harvey N. ;
Bagnall, Darren M. .
CARBON NANOTUBES, GRAPHENE, AND ASSOCIATED DEVICES V, 2012, 8462
[44]   Controllable Fabrication of Nanostructured Graphene Towards Electronics [J].
Zeng, Mengqi ;
Xiao, Yao ;
Liu, Jinxin ;
Lu, Wenjing ;
Fu, Lei .
ADVANCED ELECTRONIC MATERIALS, 2016, 2 (04)
[45]   Chemical synthesis of graphene nanoribbons [J].
Pefkianakis, Eleftherios K. ;
Sakellariou, Georgios ;
Vougioukalakis, Georgios C. .
ARKIVOC, 2015, :167-192
[46]   Acoustoelectric photoresponse of graphene nanoribbons [J].
Poole, T. ;
Nash, G. R. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (15)
[47]   Electronic transport properties of nanoribbons of graphene and ψ-graphene -based lactate nanobiosensor [J].
Khatir, Nadia Mahmoudi ;
Ahmadi, Aidin ;
Taghizade, Narges ;
Khameneh, Samane Motevali ;
Faghihnasiri, Mahdi .
SUPERLATTICES AND MICROSTRUCTURES, 2020, 145
[48]   Atomic Structure of Epitaxial Graphene Sidewall Nanoribbons: Flat Graphene, Miniribbons, and the Confinement Gap [J].
Palacio, Irene ;
Celis, Arlensiu ;
Nair, Maya N. ;
Gloter, Alexandre ;
Zobelli, Alberto ;
Sicot, Muriel ;
Malterre, Daniel ;
Nevius, Meredith S. ;
de Heer, Walt A. ;
Berger, Claire ;
Conrad, Edward H. ;
Taleb-Ibrahimi, Amina ;
Tejeda, Antonio .
NANO LETTERS, 2015, 15 (01) :182-189
[49]   Thermoelectric Properties of Graphene-Boron-Nitride Nanoribbons with Transition Metal Impurities [J].
Camelia Visan .
Journal of Electronic Materials, 2014, 43 :3470-3476
[50]   Thermoelectric Properties of Graphene-Boron-Nitride Nanoribbons with Transition Metal Impurities [J].
Visan, Camelia .
JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (09) :3470-3476